Skip to main content
Log in

Carbon-based materials as antistatic agents for the production of antistatic packaging: a review

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Antistatic packaging is largely used in the electronic industry to avoid damage in electronic components caused by electrostatic discharge (EDS), generated by friction during storage and transportation processes. Antistatic packages are commonly produced with electrically insulating polymeric matrices, indicating the need for the use of antistatic agents to impart dissipative properties to these materials and to permit the conduction of electrons through their structures. Carbon-based fillers like carbon black, graphite, glassy carbon, carbon nanotubes, and graphene have been successfully used for the production of polymeric composites with interesting and promising electrical properties, as it is indicated by the increasing numbers of works reported in the literature related to this research area in the past few years. In this way, this review article presents the latest advances related to the use of carbon-based materials in the development of new polymeric composites with dissipative properties, showing the recent approaches used for the production of antistatic packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABS:

Acrylonitrile butadiene styrene

AP:

Acrylic polymer

APAA:

Azidized polyacrylic acid

BIL:

Methyl-tri-n-butylammonium methylsulfate

CB:

Carbon black

CMC:

Carboxymethyl cellulose

CNT:

Carbon nanotube

CS:

Chitosan

EG:

Expanded graphite

EMI:

Electromagnetic interference

EPS:

Expanded polystyrene

ESD:

Electrostatic discharge

EVA:

Ethylene–vinyl acetate

GC:

Glassy carbon

GIC:

Graphite intercalating compound

GNP:

Graphene/graphite nanoplatelet

GO:

Graphene/graphite oxide

HDPE:

High‐density polyethylene

LDPE:

Low-density polyethylene

LLDPE:

Linear low-density polyethylene

MA:

Maleic anhydride

MWCNT:

Multi-walled carbon nanotube

MWCNTf:

Functionalized multi-walled carbon nanotube

PA410:

Bio-based polyamide 4,10

PA6:

Polyamide 6

PA12:

Polyamide 12

PANI:

Polyaniline

PANI-SH@Fe3O4 :

Fe3O4-modified polyaniline

PBT:

Poly(butylene terephthalate)

PC:

Polycarbonate

PDLA:

Poly(d-lactide)

PE:

Polyethylene

PEI:

Polyetherimide

PES:

Polyethersulfone

PET:

Poly(ethylene terephthalate)

PFA:

Poly(furfuryl alcohol)

PHB:

Poly(3-hydroxybutyrate)

PHBV:

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)

PI:

Polyimide

PLA:

Poly(lactic acid)

PLLA:

Poly(l-lactide)

PMMA:

Poly(methyl methacrylate)

PP:

Polypropylene

PPD:

p-Phenylene diamine

PPO/PS:

Poly(phenylene oxide)/polystyrene blend

PS:

Polystyrene

PTT:

Poly(trimethylene terephthalate)

PU:

Polyurethane

PVA-g-PAA:

Poly(vinyl alcohol-g-acrylic acid)

PVC:

Poly(vinyl chloride)

PVDF:

Polyvinylidene fluoride

PVOH:

Polyvinyl alcohol

R-EG:

Reduced and expanded graphite

rGO:

Reduced graphene/graphite oxide

SAN:

Poly(styrene-co-acrylonitrile)

SWCNT:

Single-walled carbon nanotube

References

  1. C. Ge, G. Devar, J Electrostat. (2017). https://doi.org/10.1016/j.elstat.2017.07.004

    Article  Google Scholar 

  2. K. Allen, How ESD damage affects OEMs and what they can do to mitigate the damage. (VersaLogic, 2002). http://allenmarketingdesign.com/samples/esd.win02.pdf. Accessed 19 July 2020

  3. M.G. Khazhinsky, in Silicon-on-Insulator Technology: Manufacure and Applications. ed. by O. Kononchuk, B. Nguyen (Woodhead Publishing, Cambridge, 2014), p. 243

    Chapter  Google Scholar 

  4. L.S. Vieira, L.S. Montagna, J. Marini, F.R. Passador, J. Appl. Polym. Sci. (2021). https://doi.org/10.1002/app.49740

    Article  Google Scholar 

  5. Part 1: an introduction to ESD. (ESD Association, 2020), https://www.esda.org/esd-overview/esd-fundamentals/part-1-an-introduction-to-esd/. Accessed 20 July 2020

  6. Anti-static & ESD shielding bags. (Antistat, 2020), https://www.antistat.com/product-category/esd-bags/. Accessed 29 July 2020

  7. Y.Q. Gill, H. Ehsan, M.S. Irfan, F. Saeed, A. Shakoor, Mater. Res. Express. (2020). https://doi.org/10.1088/2053-1591/ab61b5

    Article  Google Scholar 

  8. I.C. Oyama, G.P.M. Souza, M.C. Rezende, L.S. Montagna, F.R. Passador, Polym. Compos. (2020). https://doi.org/10.1002/pc.25572

    Article  Google Scholar 

  9. M.S. Santos, L.S. Montagna, M.C. Rezende, F.R. Passador, J. Appl. Polym. Sci. (2018). https://doi.org/10.1002/app.47204

    Article  Google Scholar 

  10. G.S. Ezat, A.L. Kelly, M. Youseffi, P.D. Coates, Polym. Compos. (2019). https://doi.org/10.1002/pc.25280

    Article  Google Scholar 

  11. U. Szeluga, B. Kumanek, B. Trzebicka, Compos. Part A (2015). https://doi.org/10.1016/j.compositesa.2015.02.021

    Article  Google Scholar 

  12. G. Wypych, Handbook of Fillers, 4th edn. (ChemTec Publishing, Toronto, 2016), pp. 303–363

    Book  Google Scholar 

  13. Y. Zhu, Y. Zhao, X. Zhang, L. Wang, X. Wang, J. Zhang, P. Han, J. Qiao, Mater. Lett. (2016). https://doi.org/10.1016/j.matlet.2016.03.007

    Article  Google Scholar 

  14. Z. Zhou, L. Chu, W. Tang, L. Gu, J. Electrostat. (2003). https://doi.org/10.1016/S0304-3886(02)00171-7

    Article  Google Scholar 

  15. T.F. Silva, F. Menezes, L.S. Montagna, A.P. Lemes, F.R. Passador, J. Appl. Polym. Sci. (2019). https://doi.org/10.1002/app.47273

    Article  Google Scholar 

  16. N.F. Braga, A.M. LaChance, B. Liu, L. Sun, F.R. Passador, Adv. Ind. Eng. Polym. Res. (2019). https://doi.org/10.1016/j.aiepr.2019.07.002

    Article  Google Scholar 

  17. H. Cruz, Y. Son, J. Nanosci. Nanotechnol. (2018). https://doi.org/10.1166/jnn.2018.13950

    Article  Google Scholar 

  18. Q. Zhang, J. Wang, B.H. Guo, Z.X. Guo, J. Yu, Compos. Part B Eng. (2019). https://doi.org/10.1016/j.compositesb.2019.107213

    Article  Google Scholar 

  19. W. Srihata, T. Jamnongkan, U. Rattanasak, S. Boonsang, S. Kaewpirom, J. Mater. Sci. Mater. Electron. (2017). https://doi.org/10.1007/s10854-016-5620-0

    Article  Google Scholar 

  20. R. Ram, V. Soni, D. Khastgir, Compos. Part B Eng. (2020). https://doi.org/10.1016/j.compositesb.2020.107748

    Article  Google Scholar 

  21. G. Sun, S. Zhang, Z. Yang, J. Wang, R. Chen, L. Sun, Z. Yang, S. Han, Prog. Org. Coat. (2020). https://doi.org/10.1016/j.porgcoat.2020.105611

    Article  Google Scholar 

  22. M. Zhang, C. Zhang, Z. Du, H. Li, W. Zou, Compos. Sci. Technol. (2017). https://doi.org/10.1016/j.compscitech.2016.11.010

    Article  Google Scholar 

  23. J.F. Agassant, P. Avenas, M. Vincent, B. Vergnes, P.J. Carreau, Polymer Processing: Principles and Modeling, 2nd edn. (Hanser Publishers, München, 2017), pp. 33–176

    Book  Google Scholar 

  24. M. Rahaman, A.K. Aldalbahi, P. Bhagabati, in Carbon—Containing Polymer Composites. ed. by M. Rahaman, D. Khastgir, A.K. Aldalbahi (Springer, Singapore, 2019), p. 99

    Chapter  Google Scholar 

  25. M.H. Al-Saleh, U. Sundararaj, Carbon (2009). https://doi.org/10.1016/j.carbon.2008.09.039

    Article  Google Scholar 

  26. R. Zhang, A. Dowden, H. Deng, M. Baxendale, T. Peijs, J. Nanocompos. (2009). https://doi.org/10.1016/j.compscitech.2008.11.039

    Article  Google Scholar 

  27. T. Huang, J.L. Li, J.H. Yang, N. Zhang, Y. Wang, Z.W. Zhou, Compos. Part B Eng. (2018). https://doi.org/10.1016/j.compositesb.2017.09.037

    Article  Google Scholar 

  28. N.F. Braga, H. Ding, L. Sun, F.R. Passador, J. Appl. Polym. Sci. (2020). https://doi.org/10.1002/app.50005

    Article  Google Scholar 

  29. B. Pukdnszky, in Polypropilene, ed. by J. Karger-Kocsis (Kluwer Academic Publishers, Dordrecht, 1999), pp. 554–560

  30. F. Faridirad, S. Ahmadi, M. Barmar, Polym. Eng. Sci. (2017). https://doi.org/10.1002/pen.24444

    Article  Google Scholar 

  31. C. Gonçalves, I.C. Gonçalves, F.D. Magalhães, A.M. Pinto, Polymers (2017). https://doi.org/10.3390/polym9070269

    Article  Google Scholar 

  32. K. Müller, E. Bugnicourt, M. Latorre, M. Jorda, Y.E. Sanz, J.M. Lagaron, O. Miesbauer, A. Bianchin, S. Hankin, U. Bölz, G. Pérez, M. Jesdinszki, M. Lindner, Z. Scheuerer, S. Castelló, M. Schmid, Nanomaterials (2017). https://doi.org/10.3390/nano7040074

    Article  Google Scholar 

  33. A. Kausar, J. Plast. Film Sheet. (2019). https://doi.org/10.1177/8756087918783827

    Article  Google Scholar 

  34. S.N. Tripathi, G.S.S. Rao, A.B. Mathur, R. Jasra, RSC Adv. (2017). https://doi.org/10.1039/C6RA28392F

    Article  Google Scholar 

  35. V.B. Mohan, K. Lau, D. Hui, D. Bhattacharyya, Compos. Part B (2018). https://doi.org/10.1016/j.compositesb.2018.01.013

    Article  Google Scholar 

  36. A. Kausar, Polym. Technol. Mater. (2019). https://doi.org/10.1080/25740881.2018.1563115

    Article  Google Scholar 

  37. B. McEnaney, Structure and bonding in carbon material, in Carbon Materials for Advanced Technology. ed. by T.D. Burchell (Pergamon, Oxford, 1999), pp. 1–33

    Google Scholar 

  38. M. Inagaki, F. Kang, Materials Science and Engineering of Carbon: Fundamentals, 2nd edn. (Butterworth-Heinemann, Oxford, 2014), pp. 17–205

    Book  Google Scholar 

  39. A. Krueger, Carbon Materials and Nanotechnology, 1st edn. (Wiley-VCH, Weinheim, 2010), pp. 1–31

    Book  Google Scholar 

  40. L. Wang, A.K. Tieu, H. Zhu, G. Deng, G. Hai, J. Wang, J. Yang, Carbon (2020). https://doi.org/10.1016/j.carbon.2019.12.034

    Article  Google Scholar 

  41. L.S. Montagna, T.L.A. Montanheiro, F.R. Passador, A.P. Lemes, M.C. Rezende, J. Polym. Environ. (2017). https://doi.org/10.1007/s10924-017-1051-0

    Article  Google Scholar 

  42. J.C. An, E.J. Lee, I. Hong, J. Ind. Eng. Chem. (2017). https://doi.org/10.1016/j.jiec.2016.12.017

    Article  Google Scholar 

  43. G. Chen, W. Weng, D. Wu, C. Wu, J. Lu, P. Wang, X. Chen, Carbon (2004). https://doi.org/10.1016/j.carbon.2003.12.074

    Article  Google Scholar 

  44. X.Y. Fang, X.X. Yu, H.M. Zheng, H.B. Jin, L. Wang, M.S. Cao, Phys. Lett. A (2015). https://doi.org/10.1016/j.physleta.2015.06.063

    Article  Google Scholar 

  45. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science (2004). https://doi.org/10.1126/science.1102896

    Article  Google Scholar 

  46. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science (2008). https://doi.org/10.1126/science.1157996

    Article  Google Scholar 

  47. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. (2008). https://doi.org/10.1021/nl0731872

    Article  Google Scholar 

  48. Y. Geng, S.J. Wang, J.K. Kim, J. Colloid Interface Sci. (2009). https://doi.org/10.1016/j.jcis.2009.04.005

    Article  Google Scholar 

  49. L. Karuppasamy, L. Gurusamy, G.J. Lee, J.J. Wu, in Graphene Functionalization Strategies. ed. by A. Khan, M. Jawaid, B. Neppolian, A.M. Asiri (Springer, Singapore, 2019), p. 1

    Google Scholar 

  50. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes, 1st edn. (Imperial College Press, London, 1998), pp. 35–58

    Book  Google Scholar 

  51. J. Doh, S.I. Park, Q. Yang, N. Raghavan, Nanotechnology (2019). https://doi.org/10.1088/1361-6528/ab3b79

    Article  Google Scholar 

  52. A. Aqel, K.M.M.A. El-Nour, R.A.A. Ammar, A. Al-Warthan, Arab. J. Chem. (2012). https://doi.org/10.1016/j.arabjc.2010.08.022

    Article  Google Scholar 

  53. K. Saeed, Ibrahim. Carbon Lett. (2013). https://doi.org/10.5714/CL.2013.14.3.131

    Article  Google Scholar 

  54. S.B. Sinnott, R. Andrews, D. Qian, A.M. Rao, Z. Mao, E.C. Dickey, F. Derbyshire, Chem. Phys. Lett. (1999). https://doi.org/10.1016/S0009-2614(99)01216-6

    Article  Google Scholar 

  55. B. Peng, M. Locascio, P. Zapol, S. Li, S.L. Mielke, G.C. Schatz, H.D. Espinosa, Nat. Nanotechnol. (2008). https://doi.org/10.1038/nnano.2008.211

    Article  Google Scholar 

  56. E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Nano Lett. (2006). https://doi.org/10.1021/nl052145f

    Article  Google Scholar 

  57. Y. Wang, G.J. Weng, in Micromechanics and Nanomechanics of Composite Solids. ed. by S.A. Meguid, G.J. Weng (Springer, Cham, 2018), p. 123

    Chapter  Google Scholar 

  58. R. Franklin, Proc. R. Soc. A (1951). https://doi.org/10.1098/rspa.1951.0197

    Article  Google Scholar 

  59. G. Jenkins, K. Kawamura, Nature (1971). https://doi.org/10.1038/231175a0

    Article  Google Scholar 

  60. A. Kalijadis, Z. Jovanović, M. Laušević, Z. Laušević, Carbon (2011). https://doi.org/10.1016/j.carbon.2011.02.054

    Article  Google Scholar 

  61. J.S. Field, M.V. Swain, Carbon (1996). https://doi.org/10.1016/S0008-6223(96)00071-1

    Article  Google Scholar 

  62. J. Kim, M.S. Kim, H.S. Hahm, Y.S. Lim, Macromol. Res. (2004). https://doi.org/10.1007/BF03218418

    Article  Google Scholar 

  63. H. Liu, D. Bai, H. Bai, Q. Zhang, Q. Fu, J. Phys. Chem. C (2018). https://doi.org/10.1021/acs.jpcc.8b00417

    Article  Google Scholar 

  64. B.B. Boonstra, Polymer (1979). https://doi.org/10.1016/0032-3861(79)90243-X

    Article  Google Scholar 

  65. B. Marinho, M. Ghislandi, E. Tkalya, C.E. Koning, G. With, Powder Technol. (2012). https://doi.org/10.1016/j.powtec.2012.01.024

    Article  Google Scholar 

  66. Y. Seki, M. Ince, N. Yıldız, Y. Seki, O. Ergül, K. Sever, M. Sarıkanat, Polym. Technol. Mater. (2019). https://doi.org/10.1080/25740881.2018.1563129

    Article  Google Scholar 

  67. E.L. Papadopoulou, P. Basnett, U.C. Paul, S. Marras, L. Ceseracciu, I. Roy, A. Athanassiou, ACS Omega (2019). https://doi.org/10.1021/acsomega.9b02528

    Article  Google Scholar 

  68. B. Xue, L. Ji, J. Deng, J. Zhang, J. Polym. Eng. (2018). https://doi.org/10.1515/polyeng-2016-0293

    Article  Google Scholar 

  69. K.S. Novoselov, V.I. Falko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, Nature (2012). https://doi.org/10.1038/nature11458

    Article  Google Scholar 

  70. L.F. Miranda, A.H.M. Junior, L.G.A. Masson, T.J. Silva, K. Friehe, in Characterization of Minerals, Metals, and Materials 2019. ed. by B. Li, J. Li, S. Ikhmayies, M. Zhang, Y.E. Kalay, J.S. Carpenter, J.Y. Hwang, S.N. Monteiro, C. Bai, J.P. Escobedo-Diaz, P.R. Spena, R. Goswami (Springer, Cham, 2019), p. 523

    Chapter  Google Scholar 

  71. K. Li, A. Fina, D. Marrè, F. Carosio, O. Monticelli, Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.apsusc.2020.146471

    Article  Google Scholar 

  72. Y. Kou, X. Cheng, C.W. Macosko, Macromolecules (2019). https://doi.org/10.1021/acs.macromol.9b01391

    Article  Google Scholar 

  73. Q. Wang, Q. Meng, T. Wang, W. Guo, J. Appl. Polym. Sci. (2017). https://doi.org/10.1002/app.45303

    Article  Google Scholar 

  74. F.J. Okparaocha, A.R. Ipeaiyeda, M.E. Makhatha, S.O. Alayande, Fuller. Nanotub. Carbon Nanostruct. (2019). https://doi.org/10.1080/1536383X.2019.1666365

    Article  Google Scholar 

  75. L. Wang, X. Wei, G. Wang, S. Zhao, J. Cui, A. Gao, G. Zhang, Y. Yan, Compos. Part B Eng. (2020). https://doi.org/10.1016/j.compositesb.2020.107775

    Article  Google Scholar 

  76. S. Maravi, J. Bajpai, A.K. Bajpai, Polym. Sci. Ser. A (2017). https://doi.org/10.1134/S0965545X1705008X

    Article  Google Scholar 

  77. J. Ampaiwong, P. Rattanawaleedirojn, K. Saengkiettiyut, N. Rodthongkum, P. Potiyaraj, N. Soatthiyanon, J. Nanosci. Nanotechnol. (2019). https://doi.org/10.1166/jnn.2019.16120

    Article  Google Scholar 

  78. M. Cobos, B. González, M.J. Fernández, M.D. Fernández, Int. J. Biol. Macromol. (2018). https://doi.org/10.1016/j.ijbiomac.2018.03.129

    Article  Google Scholar 

  79. X. Feng, J. Wang, C. Zhang, Z. Du, H. Li, W. Zou, RSC Adv. (2018). https://doi.org/10.1039/c8ra01044g

    Article  Google Scholar 

  80. N.F. Braga, H.M. Zaggo, L.S. Montagna, F.R. Passador, J. Compos. Sci. (2020). https://doi.org/10.3390/jcs4020044

    Article  Google Scholar 

  81. Y. Tian, J. Zhong, L. Hu, X. Zheng, J. Cheng, Z. Pu, Polym. Compos. (2020). https://doi.org/10.1002/pc.25387

    Article  Google Scholar 

  82. Y.M. Jen, Y.C. Wang, Compos. Part B (2012). https://doi.org/10.1016/j.compositesb.2012.01.036

    Article  Google Scholar 

  83. A. Pistone, A. Ferlazzo, M. Lanza, C. Milone, D. Iannazzo, A. Piperno, E. Piperopoulos, S. Galvagno, J. Nanosci. Nanotechnol. (2012). https://doi.org/10.1166/jnn.2012.4928

    Article  Google Scholar 

  84. A.H.A. Hoseini, M. Arjmand, U. Sundararaj, M. Trifkovic, Mater. Des. (2017). https://doi.org/10.1016/j.matdes.2017.04.004

    Article  Google Scholar 

  85. X. Wang, C. Zhang, Z. Du, H. Li, W. Zou, Polym. Adv. Technol. (2017). https://doi.org/10.1002/pat.3979

    Article  Google Scholar 

  86. I. Otaegi, N. Aranburu, M. Iturrondobeitia, J. Ibarretxe, G. Guerrica-Echevarría, Polymers (2019). https://doi.org/10.3390/polym11122059

    Article  Google Scholar 

  87. E.C.L. Pereira, M.E.C.F. Silva, K. Pontes, B.G. Soares, Front. Mater. (2019). https://doi.org/10.3389/fmats.2019.00234

    Article  Google Scholar 

  88. P. Kong, C. Zhang, Z. Du, H. Wang, W. Zou, Appl. Phys. A (2019). https://doi.org/10.1007/s00339-019-2588-7

    Article  Google Scholar 

  89. L. Wang, H. Wang, B. Li, Z. Guo, J. Luo, X. Huang, J. Gao, J Mater Sci. (2020). https://doi.org/10.1007/s10853-020-04797-y

    Article  Google Scholar 

  90. A.M. Poulose, A. Anis, H. Shaikh, J. George, S.M. Al-Zahrani, Polym. Compos. (2017). https://doi.org/10.1002/pc.23834

    Article  Google Scholar 

  91. L.N. Silva, E.G.R. Anjos, G.F.M. Morgado, J. Marini, E.H. Backes, L.S. Montagna, F.R. Passador, Polym. Bull. (2019). https://doi.org/10.1007/s00289-019-02928-3

    Article  Google Scholar 

  92. A.S. Mesquita, L.G.A. Silva, L.F. Miranda, in Characterization of Minerals, Metals and Materials 2018. ed. by B. Li, J. Li, S. Ikhmayies, M. Zhang, Y.E. Kalay, J.S. Carpenter, J.Y. Hwang, S.N. Monteiro, D. Firrao, A. Brown, C. Bai, Z. Peng, J.P. Escobedo-Diaz, R. Goswami, J. Kim (Springer, Cham, 2018), p. 605

    Chapter  Google Scholar 

  93. X. Zhang, J. Liu, Y. Wang, W. Wu, R. Soc. pen Sci. (2017). https://doi.org/10.1098/rsos.170769

    Article  Google Scholar 

  94. M. Rahaman, I.A.A. Ghufais, G. Periyasami, A. Aldalbahi, Int. J. Polym. Sci. (2020). https://doi.org/10.1155/2020/6421470

    Article  Google Scholar 

  95. D.I. Arun, P. Chakravarthy, B.S. Girish, K.S.S. Kumar, B. Santhosh, Smart Mater. Struct. (2019). https://doi.org/10.1088/1361-665X/ab083b

    Article  Google Scholar 

  96. Z. Starý, M. Nevoralová, V. Dragčević, AIP Conf. Proc. 10(1063/1), 5109510 (2019)

    Google Scholar 

  97. X. Lu, B. Kang, S. Shi, Polymers (2019). https://doi.org/10.3390/polym11101583

    Article  Google Scholar 

  98. T.F. Silva, F. Menezes, L.S. Montagna, A.P. Lemes, F.R. Passador, Polímeros (2020). https://doi.org/10.1590/0104-1428.06819

    Article  Google Scholar 

  99. K. Leluk, J. Ludwiczak, S. Frąckowiak, A. Iwańczuk, Cell. Chem. Technol. 54, 1 (2020)

    Article  Google Scholar 

  100. S.M.N. Sultana, S.P. Pawar, M. Kamkar, U. Sundararaj, J. Electron. Mater. (2020). https://doi.org/10.1007/s11664-019-07371-8

    Article  Google Scholar 

  101. D. Xiang, L. Wang, Y. Tang, C.J. Hill, B. Chen, E. Harkin-Jones, Int. J. Mater. Res. (2017). https://doi.org/10.3139/146.111482

    Article  Google Scholar 

  102. Q. Wang, T. Wang, J. Wang, W. Guo, Z. Qian, T. Wei, Polym. Adv. Technol. (2018). https://doi.org/10.1002/pat.4129

    Article  Google Scholar 

  103. H. Abbasi, M. Antunes, J.I. Velasco, Polymers (2018). https://doi.org/10.3390/polym10040348

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo, process 2018/09531-2), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, process 310196/2018-3, 305123/2018-1), and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

FRP had the idea for the review article; LSV, EGRA, GEAV, ICO, NFB, TFS, and LSM performed the literature search and drafted the work and FRP and MCR critically revised the work.

Corresponding author

Correspondence to Leonardo de Souza Vieira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza Vieira, L., dos Anjos, E.G.R., Verginio, G.E.A. et al. Carbon-based materials as antistatic agents for the production of antistatic packaging: a review. J Mater Sci: Mater Electron 32, 3929–3947 (2021). https://doi.org/10.1007/s10854-020-05178-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05178-6

Navigation