Skip to main content
Log in

Annealing effects on the structural, thermal, and electrical properties of 10PbTiO3–10Fe2O3–30V2O5–50B2O3 glass

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Glasses containing lead titanate (PbTiO3) have recently attracted much attention due to its unique electrical properties at high temperature. However, its large lattice anisotropy makes its sinterability difficult. 10PbTiO3–10Fe2O3–30V2O5–50B2O3 glass was prepared by conventional fast quenching technique. The estimated crystallite size after annealing at 773 K for 20 h was 62.6 nm. After annealing, triclinic iron vanadium oxide and monoclinic lead vanadium oxide phases were partially formed. The crystallization temperature (Tc) at different heating rates (β) has been investigated using Kissinger and Ozawa models under non-isothermal mode. The values of various kinetic parameters such as activation energy of crystallization (Ec), rate of crystallization (Kp), Avrami index (n), thermal stability (S), and Hruby number (Hr) have been calculated. The presence of Fe2O3 and PbTiO3 in the glass after annealing was found to enhance its thermal stability and electrical conductivity. The electrical conductivities of as-quenched and annealed glass were evaluated by dc conductivity. The dc conductivity was discussed in terms of small polaron hopping (SPH) mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. W. Mianxue, Z. Peinan, Piezoelectricity, pyroelectricity and ferroelectricity in glass ceramics based on PbTiO3. J. Non-Cryst. Solids 84, 344–351 (1986)

    Article  Google Scholar 

  2. S.-Y. Chu, T.-Y. Chen, Strontium doping effects on the characteristics of Sm-modified PbTiO3 ceramics. Sens. Actuat. A 107, 75–79 (2003)

    Article  CAS  Google Scholar 

  3. M.S. Al-Assiri, M.M. El-Desoky, Nanocrystallization as a method of improvement of electrical properties of Fe2O3–PbO2–TeO2 glasses. J. Mater. Sci. 25, 3703–3711 (2014)

    CAS  Google Scholar 

  4. S.W. Lee, K.B. Shim, K.H. Auh, P. Knott, Ferroelectric anomaly in the differential thermal analysis of PbTiO3 glass. Mater. Lett. 38, 356–359 (1999)

    Article  CAS  Google Scholar 

  5. N. Van Minh, L.M. Oanh, P. Van Doan, P. Van Hai, L.H. Hoang, Investigation of structural, optical and magnetic properties in PbTi1−xFexO3 ceramics. Ceram. Int. 37, 3785–3788 (2011)

    Article  Google Scholar 

  6. I. Ardelean, M. Toderas, S. Filip, Influence of melting temperature on iron ions behavior in B2O3–BaO–Fe2O3 glasses studied by magnetic susceptibility. J. Magn. Magn. Mater. 272–276, 339–341 (2004)

    Article  Google Scholar 

  7. H.S. Bhatti, S.T. Hussain, F.A. Khan, S. Hussain, Synthesis and induced multiferroicity of perovskite PbTiO3; a review. Appl. Surf. Sci. 367, 291–306 (2016)

    Article  CAS  Google Scholar 

  8. T. Takaishi, J. Jin, T. Uchino, T. Yoko, Structural study of PbO–B2O3 glasses by X-ray diffraction and 11B MAS NMR techniques. J. Am. Ceram. Soc. 83, 2543–2548 (2000)

    Article  CAS  Google Scholar 

  9. H. Doweidar, K. El-Egili, R. Ramadan, M. Al-Zaibani, Structural units distribution, phase separation and properties of PbO–TiO2–B2O3 glasses. J. Non-Cryst. Solids 466–467, 37–44 (2017)

    Article  Google Scholar 

  10. S. Ram, K. Ram, IR investigation of amorphous BaO-Fe2O3-B2O3 glasses prepared using 1 mol% TiO2. Infrared Phys. 29, 895–902 (1989)

    Article  CAS  Google Scholar 

  11. G.P. Singh, P. Kaur, S. Kaur, D.P. Singh, Role of V2O5 in structural properties of V2O5-MnO2-PbO-B2O3 glasses. Mater. Phys. Mech. 12, 6 (2011)

    Google Scholar 

  12. V. Sudarsan, S.K. Kulshreshtha, Study of structural aspects of V2O5–P2O5–B2O= glasses. J. Non-Cryst. Solids 258, 20–28 (1999)

    Article  CAS  Google Scholar 

  13. V. Kundu, R.L. Dhiman, A.S. Maan, A.D.R. Goya, Structural and Physical Properties of Fe2O3-B2O3-V2O5 Glasses, Advances in Condensed Matter Physics 2008 (2008) 7.

  14. J. Cha, H. Jeong, B. Ryu, Improvement of Electrical Conductivity and Chemical Durability in Fe2O3 Doped V2O5–B2O3–P2O5 Glasses. J. Nanosci. Nanotechnol. 19, 1254–1260 (2019)

    Article  CAS  Google Scholar 

  15. B. Dutta, N.A. Fahmy, I.L. Pegg, Effect of mixed transition-metal ions in glasses. I. The P2O5–V2O5–Fe2O3 system. J. Non-Crystall. Solids 351, 1958–1966 (2005)

    Article  CAS  Google Scholar 

  16. F.H. Margha, G.T. El-Bassyouni, G.M. Turky, Enhancing the electrical conductivity of vanadate glass system (Fe2O3, B2O3, V2O5) via doping with sodium or strontium cations. Ceram. Int. 45, 11838–11843 (2019)

    Article  CAS  Google Scholar 

  17. D. Hülsenberg, O. Knauf, Electrical characteristics of materials in the BaO-Fe2O3-B2O3 system. J. Non-Cryst. Solids 80, 474–480 (1986)

    Article  Google Scholar 

  18. M. Todera, S. Filipa, I. Ardeleanb, Structural study of the Fe2–O3–B2–O3-BaO glass system by FTIR spectroscopy (2006)

  19. Y. Cheng, H. Xiao, W. Guo, W. Guo, Structure and crystallization kinetics of PbO–B2O3 glasses. Ceram. Int. 33, 1341–1347 (2007)

    Article  CAS  Google Scholar 

  20. A. Al-Hajry, A. Al-Shahrani, M.M. El-Desoky, Structural and other physical properties of barium vanadate glasses. Mater. Chem. Phys. 95, 300–306 (2006)

    Article  CAS  Google Scholar 

  21. A.E. Harby, A.E. Hannora, M.M. El-Desoky, Observation of relaxor-like behavior in BT and PT doped glasses for energy storage applications. J. Alloy. Compd. 770, 906–913 (2019)

    Article  CAS  Google Scholar 

  22. S. Mahadevan, A. Giridhar, A.K. Singh, Calorimetric measurements on As-Sb-Se glasses. J. Non-Cryst. Solids 88, 11–34 (1986)

    Article  CAS  Google Scholar 

  23. P. Duhaj, D. Barančok, A. Ondrejka, The study of transformation kinetics of the amorphous Pd–Si alloys. J. Non-Cryst. Solids 21, 411–428 (1976)

    Article  CAS  Google Scholar 

  24. M.S. Al-Assiri, M.M. El-Desoky, Grain-size effects on the structural, electrical properties and ferroelectric behaviour of barium titanate-based glass–ceramic nano-composite. J. Mater. Sci. 24, 784–792 (2013)

    CAS  Google Scholar 

  25. A. Hrubý, Evaluation of glass-forming tendency by means of DTA. Czechoslov. J. Phys. B 22, 1187–1193 (1972)

    Article  Google Scholar 

  26. C. Dohare, N. Mehta, Investigation of crystallization kinetics in glassy se and binary Se98M2 (M=Ag, Cd, Zn) alloys using DSC technique in non-isothermal mode. J. Crystall. Process Technol. 2, 167–174 (2012)

    Article  CAS  Google Scholar 

  27. M. Saad, M. Poulin, Glass forming ability criteria. Mater. Sci. Forum 19–20, 11–18 (1987)

    Article  Google Scholar 

  28. D. Gwoo, T. Kim, K. Han, W. Choi, J. Kim, B. Ryu, Electrical properties of crystallized 30B2O3-70V2O5 glass. Electron. Mater. Lett. 9, 309–313 (2013)

    Article  CAS  Google Scholar 

  29. S. Deepika, K.S. Rathore, N.S. Saxena, A kinetic analysis on non-isothermal glass–crystal transformation in Ge1−xSnxSe25(0≤x≤05) glasses. J. Phys. Matter 21, 335102 (2009)

    Article  CAS  Google Scholar 

  30. M. Lasocka, The effect of scanning rate on glass transition temperature of splat-cooled Te85Ge15. Mater. Sci. Eng 23, 173–177 (1976)

    Article  CAS  Google Scholar 

  31. C.T. Moynihan, A.J. Easteal, J. Wilder, J. Tucker, Dependence of the glass transition temperature on heating and cooling rate. J. Phys. Chem. 78, 2673–2677 (1974)

    Article  CAS  Google Scholar 

  32. H.E. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702–1706 (1957)

    Article  CAS  Google Scholar 

  33. R. Wellen, E. Canedo, On the Kissinger equation and the estimate of activation energies fornon-isothermal cold crystallization of PET. Polym. Test. 40, 33–38 (2014)

    Article  CAS  Google Scholar 

  34. S.W. Lee, K.B. Shim, K.H. Auh, P. Knott, Activation energy of crystal growth in PbTiO3 glass using differential thermal analysis. J. Non-Cryst. Solids 248, 127–136 (1999)

    Article  CAS  Google Scholar 

  35. E.R. Shaaban, S.H. Mohamed, Thermal stability and crystallization kinetics of Pb and Bi borate-based glasses. J. Therm. Anal. Calorim. 107, 617–624 (2012)

    Article  CAS  Google Scholar 

  36. K. Matusita, S. Sakk, Kinetic study on non-isothermal crystallization of glass by thermal analysis. Bull. Inst. Chem. Res. Kyoto Univ. 59, 159–171 (1981)

    CAS  Google Scholar 

  37. K. Matusita, T. Komatsu, R. Yokota, Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials. J. Mater. Sci. 19, 291–296 (1984)

    Article  CAS  Google Scholar 

  38. K. Matusita, S. Sakka, Kinetic study of crystallization of glass by differential thermal analysis—criterion on application of Kissinger plot. J. Non-Cryst. Solids 38–39, 741–746 (1980)

    Article  Google Scholar 

  39. R. Vaish, K.B.R. Varma, The glass transition and crystallization kinetic studies on BaNaB9O15glasses. J. Phys. D 42, 015409 (2008)

    Article  Google Scholar 

  40. A.Z. Mahmoud, M. Mohamed, S. Moustafa, A.M. Abdelraheem, M.A. Abdel-Rahim, Study of non-isothermal crystallization kinetics of Ge20Se70Sn10 chalcogenide glass. J. Therm. Anal. Calorim. 131, 2433–2442 (2018)

    Article  CAS  Google Scholar 

  41. A.E. Harby, A.E. Hannora, M.S. Al-Assiri, M.M. El-Desoky, Correlation between grain size and transport properties of lead titanate based-glass–ceramic nano-composites. J. Mater. Sci. 27, 8446–8454 (2016)

    CAS  Google Scholar 

  42. A.E. Hannora, M.M. El-Desoky, Effects of heat treatment on the structural and electrical conductivity of Fe2O3–P2O5–PbO glasses. J. Mater. Sci. 30(21), 19100–19107 (2019)

    CAS  Google Scholar 

  43. N.F. Mott, Conduction in glasses containing transition metal ions. J. Non-Cryst. Solids 1, 1–17 (1968)

    Article  CAS  Google Scholar 

  44. I.G. Austin, N.F. Mott, Polarons in crystalline and non-crystalline materials. Adv. Phys. 18, 41–102 (1969)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This Project was supported financially by the Academy of Scientific Research and Technology (ASRT), Egypt Grant No. 6365 Science UP/ASRT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed E. Hannora.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hannora, A.E., Abbas, M.A. & El-Desoky, M.M. Annealing effects on the structural, thermal, and electrical properties of 10PbTiO3–10Fe2O3–30V2O5–50B2O3 glass. J Mater Sci: Mater Electron 32, 3998–4007 (2021). https://doi.org/10.1007/s10854-020-05142-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05142-4

Navigation