Skip to main content
Log in

Effect of pH on transport characteristics of silicon carbide nanowire field-effect transistor (SiCNW-FET)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper investigates the effect of pH on transport properties of silicon carbide nanowire field-effect transistor (SiCNW-FET) including the key parameters such as transconductance, resistivity, stability, and repeatability of the device towards harsh environment-sensing applications. Transport properties were investigated under different pH solutions ranging from pH 5 to pH 9. The device exhibited a high transconductance of 4.5 mS and a very low resistivity of 0.065 mΩ cm at pH 5 at a bias voltage of 2 V. The device showed an increase in conductance (from 2.66 to 4.5 mS) after applying the solution with pH 5 and then a substantial decrease in conductance (from 4.5 to 0.15 mS) with increasing the pH from 5 to 9 was observed. The changes in conductance can be attributed to the metal oxide/electrolyte binding sites model and to the hydrogen ions adsorption on the surface of the SiC nanowires altering the total surface charge density. The device exhibited almost a full recovery after rinsing with DI water, achieving good stability and repeatability. In consequence, this study would contribute to the development of low-power and cost-effective 3C-SiCNW-based FETs for use in the fields of bio- and environmental sensing, as well as biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. A.M. Morales, C.M. Lieber, Science 279, 208 (1998)

    Article  CAS  Google Scholar 

  2. D. Rani, V. Pachauri, S. Ingebrandt, Label-Free Biosensing (Springer, Cham, 2018), p. 27

    Book  Google Scholar 

  3. K. Zekentes, K. Rogdakis, J. Phys. D Appl. Phys. 44, 133001 (2011)

    Article  Google Scholar 

  4. J. Kong, Science 287, 622 (2000)

    Article  CAS  Google Scholar 

  5. L.R. Hilliard, X. Zhao, W. Tan, Anal. Chim. Acta 470, 51 (2002)

    Article  CAS  Google Scholar 

  6. A. Meng, M. Zhang, J. Zhang, Z. Li, CrystEngComm 14, 6755 (2012)

    Article  CAS  Google Scholar 

  7. F. Gasparyan, I. Zadorozhnyi, H. Khondkaryan, A. Arakelyan, S. Vitusevich, Nanoscale Res. Lett. 13, 87 (2018)

    Article  Google Scholar 

  8. N.P. Dasgupta, J. Sun, C. Liu, S. Brittman, S.C. Andrews, J. Lim, H. Gao, R. Yan, P. Yang, Adv. Mater. 26, 2137 (2014)

    Article  CAS  Google Scholar 

  9. M.L. Locatelli, S. Gamal, J. Phys. III 3, 1101 (1993)

    CAS  Google Scholar 

  10. K. Rogdakis, M. Bescond, E. Bano, K. Zekentes, Mater. Sci. Forum 600–603, 579 (2008)

    Article  Google Scholar 

  11. K. Teker, Microelectron. Eng. 162, 79 (2016)

    Article  CAS  Google Scholar 

  12. B. Sun, Y. Sun, C. Wang, Small 14, 1703391 (2018)

    Article  Google Scholar 

  13. J Choi, Ph.D. thesis, University of Grenoble, France, 2013.

  14. Y.M. Ahmed, S.M. El-Sheikh, J. Am. Ceram. Soc. 92, 2724 (2009)

    Article  CAS  Google Scholar 

  15. K. Bedner, V. Guzenko, A. Tarasov, M. Wipf, R. Stoop, D. Just, S. Rigante, W. Fu, R. Minamisawa, C. David, M. Calame, J. Gobrecht, C. Schönenberger, Sens. Mater 25, 8 (2013)

    Google Scholar 

  16. J. Jang, S. Choi, J. Kim, T. Park, B. Park, D. Kima, S. Choia, S. Leea, D. Kima, H. Mo, Solid State Electron. 140, 109 (2018)

    Article  CAS  Google Scholar 

  17. T.H. Kim, S.Y. Lee, N.K. Cho, H.K. Seong, H.J. Choi, S.W. Jung, S.K. Lee, Nanotechnology 17, 3394 (2006)

    Article  CAS  Google Scholar 

  18. K. Byon, D. Tham, J.E. Fischer, A.T. Johnson, Appl. Phys. Lett. 90, 143513 (2007)

    Article  Google Scholar 

  19. D.E. Yates, S. Levine, T.W. Healy, J. Chem. Soc. Faraday Trans. 70, 1807 (1974)

    Article  CAS  Google Scholar 

  20. J.F. Hsu, B.-R. Huang, C.-S. Huang, H.-L. Chen, Jpn. J. Appl. Phys. 44, 2626 (2005)

    Article  CAS  Google Scholar 

  21. M. Wilson, Phys. Today 56, 18 (2003)

    Article  Google Scholar 

  22. Y. Cui, Science 293, 1289 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

KT gratefully thanks the Istanbul Development Agency (ISTKA) for providing support for this research (Grant No. TR10/16/YNY/0102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasif Teker.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awais, M., Mousa, H. & Teker, K. Effect of pH on transport characteristics of silicon carbide nanowire field-effect transistor (SiCNW-FET). J Mater Sci: Mater Electron 32, 3431–3436 (2021). https://doi.org/10.1007/s10854-020-05089-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05089-6

Navigation