Skip to main content
Log in

Comparative study on the removal of different-type organic pollutants on three-dimensional hexagonal-tungsten trioxide/reduced graphene oxide nanorod arrays: adsorption and visible light photodegradation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of self-supporting three-dimensional (3D) hexagonal-tungsten trioxide/reduced graphene oxide (h-WO3/rGO) nanorod arrays photocatalyst are synthesized by simple hydrothermal method without substrate. By selecting cationic dye methylene blue (MB), amphoteric dye rhodamine B (RhB) and anionic dye methyl orange (MO) as model organic pollutants, the experiments indicate that the 3D h-WO3/rGO photocatalyst shows a synergistic effect of adsorption and photocatalysis under visible light irradiation for the removal of MB and RhB. WrG1 which adding 1 wt% graphene oxide (GO) during synthesis demonstrates optimal adsorption and degradation activity and the bandgap energy (Eg) of WrG1 is 2.02 eV. Adsorption removal efficiency of MB, RhB and MO are 96.0%, 62.4% and 10.9% and the total removal efficiency of MB, RhB and MO are 99.3%, 84.8% and 18.3% by 0.3 g/L WrG1, respectively. Moreover, holes (h+) were the main active species for the photocatalytic degradation of organic pollutants. This work revealed the adsorption and photocatalysis activity of three different charge dyes on the h-WO3/rGO, which facilitates in understanding the removal mechanism in combination with other analytical methods and the impact of photocatalyst chargeability on degradation of organic pollutants. The visible light bifunctional catalyst h-WO3/rGO as adsorbent and photocatalyst presents a great potential in removal cationic and amphoteric organic pollutant from wastewater without additional treatment under ambient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C.C. Wang, J.R. Li, X.L. Lv, Y.Q. Zhang, G. Guo, Energy Environ. Sci. 7, 2831–2867 (2014)

    Article  CAS  Google Scholar 

  2. C. Chen, W. Ma, J. Zhao, Chem. Soc. Rev. 39, 4206–4219 (2010)

    Article  CAS  Google Scholar 

  3. J. Zhao, J. Zhang, D. Zhang, Z. Hu, Y. Sun, Sci. Total Environ. 752, 141932 (2021)

    Article  CAS  Google Scholar 

  4. Y. Shang, Y. Cui, R. Shi, P. Yang, J. Wang, Y. Wang, J. Hazard. Mater. 379, 120834 (2019)

    Article  CAS  Google Scholar 

  5. B. Neppolian, H.C. Choi, S. Sakthivel, B. Arabindoo, V. Murugesan, J. Hazard. Mater. 89, 303–317 (2002)

    Article  CAS  Google Scholar 

  6. S. Zhang, H. Li, Z. Yang, J. Alloy. Compd. 722, 555–563 (2017)

    Article  CAS  Google Scholar 

  7. Y. Yue, P. Zhang, W. Wang, Y. Cai, F. Tan, X. Wang, X. Qiao, P.K. Wong, J. Hazard. Mater. 384, 121302–121302 (2020)

    Article  CAS  Google Scholar 

  8. H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, ACS Nano 4, 380–386 (2010)

    Article  CAS  Google Scholar 

  9. R. Xu, M. Su, Y. Liu, Z. Chen, C. Ji, M. Yang, X. Chang, D. Chen, J. Clean. Prod. 242, 118366 (2020)

    Article  CAS  Google Scholar 

  10. Q. Wang, X. Lei, F. Pan, D. Xia, Y. Shang, W. Sun, W. Liu, Colloid. Surf. A. 555, 605–614 (2018)

    Article  CAS  Google Scholar 

  11. Q. Ul Ain, U. Rasheed, M. Yaseen, H. Zhang, Z. Tong, J. Hazard. Mater. 397, 122758 (2020)

    Article  Google Scholar 

  12. G. Zhang, Y. Liu, Z. Hashisho, Z. Sun, S. Zheng, L. Zhong, Appl. Surf. Sci. 525, 146633 (2020)

    Article  CAS  Google Scholar 

  13. F. Chen, W. An, L. Liu, Y. Liang, W. Cui, Appl. Catal. B 217, 65–80 (2017)

    Article  CAS  Google Scholar 

  14. X. Liu, A. Jin, Y. Jia, T. Xia, C. Deng, M. Zhu, C. Chen, X. Chen, Appl. Surf. Sci. 405, 359–371 (2017)

    Article  CAS  Google Scholar 

  15. S. Prabhu, S. Manikumar, L. Cindrella, O.J. Kwon, Mater. Sci. Semicond. Proc. 74, 136–146 (2018)

    Article  CAS  Google Scholar 

  16. W. Zhu, F. Sun, R. Goei, Y. Zhou, Appl. Catal. B 207, 93–102 (2017)

    Article  CAS  Google Scholar 

  17. D. Chen, J. Ye, Adv. Funct. Mater. 18, 1922–1928 (2008)

    Article  CAS  Google Scholar 

  18. M.E. Khan, M.M. Khan, M.H. Cho, RSC Adv. 6, 20824–20833 (2016)

    Article  CAS  Google Scholar 

  19. M. Farhadian, P. Sangpour, G. Hosseinzadeh, J. Energy Chem. 24, 171–177 (2015)

    Article  Google Scholar 

  20. L. Tie, C. Yu, Y. Zhao, H. Chen, S. Yang, J. Sun, S. Dong, J. Sun, J. Alloy. Compd. 769, 83–91 (2018)

    Article  CAS  Google Scholar 

  21. X. Lang, X. Chen, J. Zhao, Chem. Soc. Rev. 43, 473–486 (2014)

    Article  CAS  Google Scholar 

  22. S. Adhikari, S. Mandal, D. Sarkar, D.H. Kim, G. Madras, Appl. Surf. Sci. 420, 472–482 (2017)

    Article  CAS  Google Scholar 

  23. S.M. Park, C. Nam, Ceram. Int. 43, 17022–17025 (2017)

    Article  CAS  Google Scholar 

  24. X. Huang, X. Qi, F. Boey, H. Zhang, Chem. Soc. Rev. 41, 666–686 (2012)

    Article  CAS  Google Scholar 

  25. J. Zhang, Z. Xiong, X.S. Zhao, J. Mater. Chem. 21, 3634–3640 (2011)

    Article  CAS  Google Scholar 

  26. J.N. Tiwari, K. Mahesh, N.H. Le, K.C. Kemp, R. Timilsina, R.N. Tiwari, K.S. Kim, Carbon 56, 173–182 (2013)

    Article  CAS  Google Scholar 

  27. J. Shi, Z. Cheng, L. Gao, Y. Zhang, J. Xu, H. Zhao, Sens. Actuators B 230, 736–745 (2016)

    Article  CAS  Google Scholar 

  28. L. Fu, T. Xia, Y. Zheng, J. Yang, A. Wang, Z. Wang, Ceram. Int. 41, 5903–5908 (2015)

    Article  CAS  Google Scholar 

  29. L. Zhao, X. Xi, Y. Liu, L. Ma, Z. Nie, Chem. Phys. 528, 110515 (2020)

    Article  CAS  Google Scholar 

  30. E. Sohouli, M. Ghalkhani, M. Rostami, M.R. Nasrabadi, F. Ahmadi, Mat. Sci. Eng. C 117, 111300 (2020)

    Article  CAS  Google Scholar 

  31. H.P. Qi, H.L. Wang, D.Y. Zhao, Nanotechnology 31, 375701 (2020)

    Article  CAS  Google Scholar 

  32. A. Singh, S.K. Ojha, A.K. Ojha, Synth. Met. 259, 116215 (2020)

    Article  CAS  Google Scholar 

  33. S. Xiao, C. Zhou, X. Ye, Z. Lian, N. Zhang, J. Yang, W. Chen, H. Li, ACS Mater. Interfaces 12, 32604–32614 (2020)

    Article  CAS  Google Scholar 

  34. C.M. Hung, D.Q. Dat, N.V. Duy, V.V. Quang, N.V. Toan, N.V. Hieu, N.D. Hoa, Mater. Res. Bull. 125, 110810 (2020)

    Article  CAS  Google Scholar 

  35. R. Rong, L. Wang, J. Alloy. Compd. 850, 156742 (2021)

    Article  CAS  Google Scholar 

  36. D. Xu, L. Li, R. He, L. Qi, L. Zhang, B. Cheng, Appl. Surf. Sci. 434, 620–625 (2018)

    Article  CAS  Google Scholar 

  37. L. Allagui, B. Chouchene, T. Gries, G. Medjahdi, E. Girot, X. Framboisier, A.B. Amara, L. Balan, R. Schneider, Appl. Surf. Sci. 490, 580–591 (2019)

    Article  CAS  Google Scholar 

  38. Y. Wang, X. Di, X. Wu, X. Li, J. Alloy. Compd. 846, 156215 (2020)

    Article  CAS  Google Scholar 

  39. A. Muthukrishnaraj, S.S. Kalaivani, A. Manikandan, H.P. Kavitha, R. Srinivasan, N. Balasubramanian, J. Alloy. Compd. 836, 155377 (2020)

    Article  CAS  Google Scholar 

  40. D. Yuan, W. Huang, X. Chen, Z. Li, J. Ding, L. Wang, H. Wan, W. Dai, G. Guan, Appl. Surf. Sci. 489, 658–667 (2019)

    Article  CAS  Google Scholar 

  41. Y.O. Ibarahim, M.A. Gondal, A. Alaswad, R.A. Moqbel, M. Hassan, E. Cevik, T.F. Qahtan, M.A. Dastageer, A. Bozkurt, Ceram. Int. 46, 444–451 (2020)

    Article  Google Scholar 

  42. C.Y. Feng, L. Tang, Y.C. Deng, J.J. Wang, W.W. Tang, Y.N. Liu, Z.M. Chen, J.F. Yu, J.J. Wang, Q.H. Liang, Chem. Eng. J. 389, 124474 (2020)

    Article  CAS  Google Scholar 

  43. K. Thiyagarajan, M. Muralidharan, K. Sivakumar, J. Supercond. Nov. Magn. 31, 117–125 (2018)

    Article  CAS  Google Scholar 

  44. D. Xu, X. Sun, X. Zhao, L. Huang, Y. Qian, X. Tao, Q. Guo, Water Air Soil Pollut. 229, 317 (2018)

    Article  Google Scholar 

  45. W. Mu, Q. Yu, R. Hu, X. Li, H. Wei, Y. Jian, Appl. Surf. Sci. 423, 1203–1211 (2017)

    Article  CAS  Google Scholar 

  46. S. Chen, Y. Hu, S. Meng, X. Fu, Appl. Catal. B 150, 564–573 (2014)

    Article  Google Scholar 

  47. J. Xie, N. Guo, A. Liu, Y. Cao, J. Hu, D. Jia, J. Alloy. Compd. 784, 377–385 (2019)

    Article  CAS  Google Scholar 

  48. Y. Bao, H. Guo, L. Jiang, Z. Liu, J. Qu, C. Zhang, X. Jia, K. Chen, Appl. Surf. Sci. 496, 143639 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by Beijing Natural Science Foundation (Grant Numbers 2192058), National Natural Science Foundation of China (Grant Numbers 21778054, 51772289, 51972302), National Key Research and Development Program of China (grant number 2016YFF0203700), State Key Laboratory of Natural and Biomimetic Drugs (Grant Number K20180202), Fusion Project of Molecular Science and Education for Institute of Chemistry (Grant Number Y52902HED2), and UCAS Students’ Entrepreneurship Research (Grant Number 118900EA12).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Wu or Yujian He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Ti, M., Li, Z. et al. Comparative study on the removal of different-type organic pollutants on three-dimensional hexagonal-tungsten trioxide/reduced graphene oxide nanorod arrays: adsorption and visible light photodegradation. J Mater Sci: Mater Electron 32, 2268–2282 (2021). https://doi.org/10.1007/s10854-020-04991-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04991-3

Navigation