Skip to main content
Log in

Effect of filler loading on the shielding of electromagnetic interference of reduced graphene oxide reinforced polypropylene nanocomposites prepared via a twin-screw extruder

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Thermoplastic polypropylene (PP) with different loadings (0.5, 1, 3 & 5 wt%) of reduced graphene oxide (RGO) were prepared to design a nanocomposite to shield the electromagnetic interference (EMI) using melt processing technique via a twin-screw extruder. The nanocomposites were characterized by dc conductivity, mechanical, fractography, and electromagnetic shielding applications. Incorporation of RGO significantly affects the mechanical strength of nanocomposites, which helps to rise in the tensile (4.7%) and flexural strength (4%) at maximum (5 wt%) RGO loading compared to pure PP. There has an improvement in the electrical conductivity of nanocomposites with an increase in the filler load. The RGO/PP nanocomposites exhibit the EMI shielding effectiveness (SE) of − 10.2 dB with 2 mm of thickness at 5 wt% of RGO loading. The outcomes showed that the RGO/PP nanocomposites are able to block up to 90% of the EM wave and are a potential candidate for another kind of microwave absorbing material at large-scale manufacturing division.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. George, S.M. Simon, P.V.P. Sajna, M.M. Faisal, R. Wilson, A. Chandran, P.R. Biju, C. Joseph, Green and facile approach to prepare polypropylene/in situ reduced graphene oxide nanocomposites with excellent electromagnetic interference shielding properties. RSC Adv. 8, 30412–30428 (2018)

    Article  CAS  Google Scholar 

  2. M. Blettner, B. Schlehofer, J. Breckenkamp, B. Kowall, S. Schmiedel, U. Reis, P. Potthoff, J. Schu, Mobile phone base stations and adverse health effects: phase 1 of a population-based, cross- sectional study in Germany. Occup. Environ. Med. 66, 118–123 (2009)

    Article  CAS  Google Scholar 

  3. M. González, G. Mokry, M. De Nicolás, J. Baselga, J. Pozuelo, Carbon nanotube composites as electromagnetic shielding materials in GHz range. Chem. Rec. 18, 1–11 (2018)

    Article  Google Scholar 

  4. L. Zhang, S. Bi, M. Liu, Lightweight electromagnetic interference shielding materials and their mechanisms, in Electromagnetic materials. (IntechOpen, London, 2018). https://doi.org/10.5772/intechopen.82270

    Chapter  Google Scholar 

  5. Y. Bhattacharjee, S. Biswas, S. Bose, Thermoplastic Polymer Composites for EMI Shielding Applications (Elsevier Inc, Amsterdam, 2020) https://doi.org/10.1016/B978-0-12-817590-3.00005-1

    Book  Google Scholar 

  6. Z. Shen, J. Feng, Preparation of thermally conductive polymer composites with good electromagnetic interference shielding efficiency based on natural wood-derived carbon scaffolds, ACS sustain. Chem. Eng. 7, 6259–6266 (2019)

    CAS  Google Scholar 

  7. Z. Chen, C. Xu, C. Ma, W. Ren, H.M. Cheng, Lightweightand flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25, 1296–1300 (2013)

    Article  CAS  Google Scholar 

  8. A.S. Hoang, Electrical conductivity and electromagnetic interference shielding characteristics of multiwalled carbon nanotube filled polyurethane composite films. Adv. Nat. Sci. (2011). https://doi.org/10.1088/2043-6262/2/2/025007

    Article  Google Scholar 

  9. J. Ha, S. Hong, J. Ryu, J. Bae, S. Park, Development of multi-functional graphene polymer composites having electromagnetic interference. Polymers 11(12), 2101 (2019)

    Article  CAS  Google Scholar 

  10. X. Wang, Investigation of electromagnetic shielding effectiveness of nanostructural carbon black/ABS composites. J. Electromagn. Anal. Appl. 3, 160–164 (2011)

    Article  CAS  Google Scholar 

  11. S. Chhetri, P. Samanta, N.C. Murmu, S. Kumar, Electromagnetic interference shielding and thermal properties of non- covalently functionalized reduced graphene oxide/epoxy composites. AIMS Mater. Sci. 4(1), 61–74 (2016)

    Article  Google Scholar 

  12. K. Cheng, H. Li, M. Zhu, H. Qiu, J. Yang, In situ polymerization of graphene-polyaniline@polyimide composite films with high EMI shielding and electrical properties. RSC Adv. 10, 2368–2377 (2020)

    Article  CAS  Google Scholar 

  13. N.A. Bhagat, N.K. Shrivastava, S. Suin, S. Maiti, B.B. Khatua, Development of electrical conductivity in PP/HDPE/MWCNT nanocomposite by melt mixing at very low loading of MWCNT. Polym. Compos. 34, 787–798 (2013)

    Article  CAS  Google Scholar 

  14. S. Ganguly, P. Bhawal, R. Ravindren, N.C. Das, Polymer nanocomposites for electromagnetic interference shielding: a review. J. Nanosci. Nanotechnol. 18, 7641–7669 (2018)

    Article  CAS  Google Scholar 

  15. S. Khasim, Results in physics polyaniline-graphene nanoplatelet composite films with improved conductivity for high performance X-band microwave shielding applications. Results Phys. 12, 1073–1081 (2019)

    Article  Google Scholar 

  16. J. Yan, Y. Huang, C. Wei, N. Zhang, P. Liu, Covalently bonded polyaniline/graphene composites as high- performance electromagnetic (EM) wave absorption materials. Composites A 99, 121–128 (2017)

    Article  CAS  Google Scholar 

  17. X. Chen, J. Chen, F. Meng, L. Shan, M. Jiang, X. Xu, J. Lu, Y. Wang, Z. Zhou, Hierarchical composites of polypyrrole/graphene oxide synthesized by in situ intercalation polymerization for high efficiency and broadband responses of electromagnetic absorption. Compos. Sci. Technol. 127, 71–78 (2016)

    Article  CAS  Google Scholar 

  18. Y. Wang, X. Gao, Y. Fu, X. Wu, Q. Wang, W. Zhang, C. Luo, Enhanced microwave absorption performances of polyaniline/graphene aerogel by covalent bonding. Composites B 169, 221–228 (2019)

    Article  CAS  Google Scholar 

  19. J. Luo, Y. Xu, W. Yao, C. Jiang, J. Xu, Synthesis and microwave absorption properties of reduced graphene oxide-magnetic porous nanospheres-polyaniline composites. Compos. Sci. Technol. 117, 315–321 (2015)

    Article  CAS  Google Scholar 

  20. P. Sawai, P.P. Chattopadhaya, S. Banerjee, Synthesized reduce graphene oxide (rGO) filled polyetherimide based nanocomposites for EMI shielding applications. Mater. Today Proc. 5, 9989–9999 (2018)

    Article  CAS  Google Scholar 

  21. D.X. Yan, P.G. Ren, H. Pang, Q. Fu, M.B. Yang, Z.M. Li, Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. J. Mater. Chem. 22(36), 18772–18774 (2012)

    Article  CAS  Google Scholar 

  22. L. Ma, Z. Lu, J. Tan, J. Liu, N. Black, T. Li, J.C. Gallop, L. Hao, Transparent conducting graphene hybrid films to improve electromagnetic interference (EMI) shielding performance of graphene. ACS Appl. Mater. Interfaces 9, 34221–34229 (2017)

    Article  CAS  Google Scholar 

  23. M.D. Teli, S.P. Valia, Graphene, C.N.T. based EMI shielding materials introduction to graphene and carbon nanotubes brief outline of synthesis of EMI shielding materials, in Advanced materials for electromagnetic shielding: fundamentals, properties, and applications. (Wiley, Hoboken, 2019), pp. 241–261

    Google Scholar 

  24. D. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P. Ren, Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25, 559 (2015)

    Article  CAS  Google Scholar 

  25. S. Kim, J. Oh, M. Kim, W. Jang, M. Wang, Y. Kim, H.W. Seo, Y.C. Kim, J. Lee, Y. Lee, J. Nam, Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition. ACS Appl. Mater. Interfaces 6, 17647–17653 (2014)

    Article  CAS  Google Scholar 

  26. Y. Zhu, H. Yang, G. Duan, Y. Zhao, Liu, Electromagneticinterference shielding polymer composites with magnetic andconductive FeCo/reduced graphene oxide 3D networks. J. Mater. Sci.: Mater. Electron. 30, 2045–2056 (2019)

    CAS  Google Scholar 

  27. D.F. Wu, Y.R. Sun, L. Wu, M. Zhang, Kinetic study on the melt compounding of polypropylene/multi-walled carbon nanotube composites. J. Polym. Sci. B 47, 608–618 (2009)

    Article  CAS  Google Scholar 

  28. I. Kim, Y.G.Y.U. Jeong, Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity. J. Polym. Sci. B 48, 850 (2010)

    Article  CAS  Google Scholar 

  29. H. Zhang, W. Zheng, Q. Yan, Y. Yang, J. Wang, Z. Lu, G. Ji, Z. Yu, Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51, 1191–1196 (2010). https://doi.org/10.1016/j.polymer.2010.01.027

    Article  CAS  Google Scholar 

  30. K. Kalaitzidou, H. Fukushima, L.T. Drzal, Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon 45, 1446–1452 (2007)

    Article  CAS  Google Scholar 

  31. W. Zheng, X. Lu, S. Wong, Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene. J. Appl. Polym. Sci. 91, 2781–2788 (2004)

    Article  CAS  Google Scholar 

  32. J. Liu, X. Lu, C. Wu, Effect of preparation methods on crystallization behavior and tensile strength of poly (vinylidene fluoride) membranes. Membranes 3, 389–405 (2013)

    Article  Google Scholar 

  33. V. Sriram, G. Radhakrishnan, Novel short-chain crosslinked cationomeric polyurethanes. Polym. Bull. 55, 165–172 (2005)

    Article  CAS  Google Scholar 

  34. G.B. Olowojoba, S. Eslava, E.S. Gutierrez, In situ thermally reduced graphene oxide/epoxy composites: thermal and mechanical properties. Appl. Nanosci. 6, 1015–1022 (2016)

    Article  CAS  Google Scholar 

  35. L. Zhang, J. Wang, H. Wang, Y. Xu, Z. Wang, Z. Li, Y. Mi, S. Yang, Preparation, mechanical and thermal properties of functionalized graphene/polyimide nanocomposites. Composites A 43(9), 1537–1545 (2012)

    Article  CAS  Google Scholar 

  36. H. Mahmood, M. Tripathi, N. Pugno, A. Pegoretti, Enhancement of interfacial adhesion in glass fiber/epoxy composites by electrophoretic deposition of graphene oxide on glass fibers. Compos. Sci. Technol. 126, 149–157 (2016)

    Article  CAS  Google Scholar 

  37. C. Zeng, S. Lu, X. Xiao, J. Gao, L. Pan, Ehnaced thermal and mechanical properties of epoxy composites by mixing noncovalently functionalized graphene sheets. Polym. Bull. 72, 453–472 (2015)

    Article  CAS  Google Scholar 

  38. J. Gu, Q. Zhang, J. Dang, J. Zhang, S. Chen, Preparation and mechanical properties researches of silane-coupling reagent modified b-silicon carbide filled epoxy composites. Polym. Bull. 62(5), 689–697 (2009)

    Article  CAS  Google Scholar 

  39. R. Bera, S. Maiti, B.B. Khatua, High electromagnetic interference shielding with high electrical conductivity through selective dispersion of multiwall carbon nanotube in poly (e -caprolactone)/MWCNT composites. J. Appl. Polym. Sci. 42161, 1–10 (2015)

    Google Scholar 

  40. N. Ryvkina, I. Tchmutin, The deformation behavior of conductivity in composites where charge carrier transport is by tunneling: theoretical modeling and experimental results. Synth. Met. 148, 141–146 (2005)

    Article  CAS  Google Scholar 

  41. S. Maiti, N.K. Shrivastava, S. Suin, B.B. Khatua, Polystyrene/MWCNT/graphite nanoplate nanocomposites: efficient electromagnetic interference shielding material through graphite nanoplate– MWCNT–graphite nanoplate networking. ACS Appl. Mater. Interfaces 5, 4712–4724 (2013)

    Article  CAS  Google Scholar 

  42. J. Joo, C.Y. Lee, High frequency electromagnetic interference shielding response of mixtures and multilayer films based on conducting polymers High frequency electromagnetic interference shielding response of mixtures and multilayer films based on conducting polymers. J. Appl. Phys. 88, 513 (2000)

    Article  CAS  Google Scholar 

  43. A. Ohlan, K. Singh, A. Chandra, V.N. Singh, S.K. Dhawan, Conjugated polymer nanocomposites: synthesis, dielectric, and microwave absorption studies. J. Appl. Phys. 106, 044305 (2009)

    Article  Google Scholar 

  44. Y. Wang, X. Jing, Intrinsically conducting polymers for electromagnetic interference shielding. Polym. Adv. Technol 16, 344–351 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Kaushal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaushal, A., Singh, V. Effect of filler loading on the shielding of electromagnetic interference of reduced graphene oxide reinforced polypropylene nanocomposites prepared via a twin-screw extruder. J Mater Sci: Mater Electron 31, 22162–22170 (2020). https://doi.org/10.1007/s10854-020-04719-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04719-3

Navigation