Skip to main content
Log in

Iron oxide-coated MWCNTs nanohybrid field emitters: a potential cold cathode for next-generation electron sources

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, we have reported that the field emission properties of multiwall carbon nanotubes (MWCNTs) were significantly increased by decorating their surface by iron oxide nanoparticles. MWCNTs were prepared on silicon substrate through low-pressure chemical vapour deposition using acetylene as source gas. The iron oxide nanoparticles were grown on the surface of MWCNTs by thermal evaporation technique. Modified surface morphologies of the prepared films were characterized through field emission scanning electron microscope (FESEM), Raman spectroscopy and X-ray diffraction. A significant change in current density, stability and turn-on voltage has been observed in iron oxide-coated MWCNT films. Decoration of iron oxide nanoparticles reduces turn-on voltage from 4 to 3.4 V/μm, while current density increases from 10.15 to 33.26 mA/cm2. For practical MWCNT-based field emission devices, it is necessary to improve the emission current density and stability. The excellent field emission parameters are obtained and calculated which make them useful for high-performance field emission-based devices. The mechanism of emission of electrons is well described by the Fowler Nordheim theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430), 603–605 (1993)

    Article  CAS  Google Scholar 

  2. E. Dervishi, L. Zhongrui, W. Fumiya, S. Viney, A.R. Biris, X. Yang, A.S. Biris, High-aspect ratio and horizontally oriented carbon nanotubes synthesized by RF-cCVD. Diam. Relat Mater. 19(1), 67–72 (2010)

    Article  CAS  Google Scholar 

  3. P.R. Bandaru, Electrical properties and applications of carbon nanotube structures. J. Nanosci. Nanotechnol. 7(4–5), 1239–1267 (2007)

    Article  CAS  Google Scholar 

  4. M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453), 637–640 (2000)

    Article  CAS  Google Scholar 

  5. A. Takakura, K. Beppu, T. Nishihara, A. Fukui, T. Kozeki, T. Namazu, Y. Miyauchi, K. Itami, Strength of carbon nanotubes depends on their chemical structures. Nat. Commun. 10(1), 1–7 (2019)

    Article  CAS  Google Scholar 

  6. L. Deng, R.J. Young, I.A. Kinloch, R. Sun, G. Zhang, L. Noé, M. Monthioux, Coefficient of thermal expansion of carbon nanotubes measured by Raman spectroscopy. Appl. Phys. Lett. 104(5), 051907 (2014)

    Article  CAS  Google Scholar 

  7. N. Dejonge, J.M. Bonard, Carbon nanotube electron sources and applications. Philos. Trans. R Soc. Lond. Ser. A 362(1823), 2239–2266 (2004)

    Article  CAS  Google Scholar 

  8. X. Liang, J. Xia, G. Dong, B. Tian, Carbon Nanotube Thin Film Transistors for Flat Panel Display Application Single-Walled Carbon Nanotubes (Springer, Cham, 2019), pp. 225–256

    Google Scholar 

  9. J.L. Kwo, M. Yokoyama, W.C. Wang, F.Y. Chuang, I.N. Lin, Characteristics of flat panel display using carbon nanotubes as electron emitters. Diam. Relat. Mater. 9(3–6), 1270–1274 (2000)

    Article  CAS  Google Scholar 

  10. J. Zhang, Xi Wang, W. Yang, Yu Weidong, T. Feng, Q. Li, X. Liu, C. Yang, Interaction between carbon nanotubes and substrate and its implication on field emission mechanism. Carbon 44(3), 418–422 (2006)

    Article  CAS  Google Scholar 

  11. L. Valentini, I. Armentano, J.M. Kenny, C. Cantalini, L. Lozzi, S. Santucci, Sensors for sub-ppm NO2 gas detection based on carbon nanotube thin films. Appl. Phys. Lett. 82(6), 961–963 (2003)

    Article  CAS  Google Scholar 

  12. Y. Chen, D.T. Shaw, X.D. Bai, E.G. Wang, C. Lund, W.M. Lu, D.D.L. Chung, Hydrogen storage in aligned carbon nanotubes. Appl. Phys. Lett. 78(15), 2128–2130 (2001)

    Article  CAS  Google Scholar 

  13. R.H. Fowler, L. Nordheim, Electron emission in intense electric fields. Proc. R Soc. Lond. Ser. A 119(781), 173–181 (1928)

    Article  CAS  Google Scholar 

  14. J. Zhang, C. Yang, Y. Wang, T. Feng, Yu Weidong, J. Jiang, Xi Wang, X. Liu, Improvement of the field emission of carbon nanotubes by hafnium coating and annealing. Nanotechnology 17(1), 257 (2005)

    Article  CAS  Google Scholar 

  15. Y. Liu, L. Liu, P. Liu, L. Sheng, S. Fan, Plasma etching carbon nanotube arrays and the field emission properties. Diam. Relat. Mater. 13(9), 1609–1613 (2004)

    Article  CAS  Google Scholar 

  16. C.Y. Zhi, X.D. Bai, E.G. Wang, Enhanced field emission from carbon nanotubes by hydrogen plasma treatment. Appl. Phys. Lett. 81(9), 1690–1692 (2002)

    Article  CAS  Google Scholar 

  17. D.M. Trucchi, N.A. Melosh, Electron-emission materials: advances, applications, and models. MRS Bull. 42(7), 488–492 (2017)

    Article  CAS  Google Scholar 

  18. Y.D. Lim, D. Grapov, L. Hu, Q. Kong, B.K. Tay, V. Labunov, J. Miao, P. Coquet, S. Aditya, Enhanced field emission properties of carbon nanotube bundles confined in SiO2 pits. Nanotechnology 29(7), 075205 (2018)

    Article  CAS  Google Scholar 

  19. W.S. Kim, J. Lee, T.W. Jeong, J.N. Heo, B.Y. Kong, Y.W. Jin, J.M. Kim, S.H. Cho, J.H. Park, D.H. Choe, Improved emission stability of single-walled carbon nanotube field emitters by plasma treatment. Appl. Phys. Lett. 87(16), 163112 (2005)

    Article  CAS  Google Scholar 

  20. D. Li, Y. Cheng, Y. Wang, H. Zhang, C. Dong, Da Li, Improved field emission properties of carbon nanotubes grown on stainless steel substrate and its application in ionization gauge. Appl. Surf. Sci. 365, 10–18 (2016)

    Article  CAS  Google Scholar 

  21. A.P. Pierlot, A.L. Woodhead, J.S. Church, Thermal annealing effects on multi-walled carbon nanotube yarns probed by Raman spectroscopy. Spectrochim. Acta Part A 117, 598–603 (2014)

    Article  CAS  Google Scholar 

  22. K.S. Hazra, P. Rai, D.R. Mohapatra, N. Kulshrestha, R. Bajpai, S. Roy, D.S. Misra, Dramatic enhancement of the emission current density from carbon nanotube based nanosize tips with extremely low onset fields. ACS Nano 3(9), 2617–2622 (2009)

    Article  CAS  Google Scholar 

  23. S. Masahito, Y. Kashiwagi, Y. Li, K. Arstila, O. Richard, D.J. Cott, M. Heyns, S.D. Gendt, G. Groeseneken, P.M. Vereecken, Measuring the electrical resistivity and contact resistance of vertical carbon nanotube bundles for application as interconnects. Nanotechnology 22(8), 085302 (2011)

    Article  CAS  Google Scholar 

  24. Z.D. Lin, S.J. Young, C.H. Hsiao, S.J. Chang, C.S. Huang, Improved field emission properties of Ag-decorated multi-walled carbon nanotubes. IEEE Photon. Technol. Lett. 25(11), 1017–1019 (2013)

    Article  CAS  Google Scholar 

  25. Y. Sun, D.H. Shin, K.N. Yun, Y.M. Hwang, Y. Song, G. Leti, S.G. Jeon, J.I. Kim, Y. Saito, C.J. Lee, Field emission behavior of carbon nanotube field emitters after high temperature thermal annealing. AIP Adv. 4(7), 077110 (2014)

    Article  CAS  Google Scholar 

  26. Z. Wang, Y. Zuo, Y. Li, X. Han, X. Guo, J. Wang, B. Cao, L. Xi, D. Xue, Improved field emission properties of carbon nanotubes decorated with Ta layer. Carbon 73, 114–124 (2014)

    Article  CAS  Google Scholar 

  27. S. Sridhar, L. Ge, C.S. Tiwary, A.C. Hart, S. Ozden, K. Kalaga, S. Lei et al., Enhanced field emission properties from CNT arrays synthesized on inconelsuperalloy. ACS Appl. Mater. Interfaces. 6(3), 1986–1991 (2014)

    Article  CAS  Google Scholar 

  28. R. Patra, S. Ghosh, E. Sheremet, M. Jha, R.D. Rodriguez, D. Lehmann, A.K. Ganguli et al., Enhanced field emission from lanthanum hexaboride coated multiwalled carbon nanotubes: correlation with physical properties. J. Appl. Phys. 116(16), 164309 (2014)

    Article  CAS  Google Scholar 

  29. A. Wadhawan, R.E. Stallcup, J.M. Pérez, Effects of Cs deposition on the field-emission properties of single-walled carbon-nanotube bundles. Appl. Phys. Lett. 78(1), 108–110 (2001)

    Article  CAS  Google Scholar 

  30. D. Nawn, D. Banerjee, K.K. Chattopadhyay, Zinc oxide nanostructure decorated amorphous carbon nanotubes: an improved field emitter. Diam. Relat. Mater. 34, 50–59 (2013)

    Article  CAS  Google Scholar 

  31. Sreekanth M., S. Ghosh, and P. Srivastava (2018) Highly enhanced field emission current density of copper oxide coated vertically aligned carbon nanotubes: role of interface and electronic structure. arXiv preprint arXiv:1811.10951 (2018).

  32. V. Gurylev, T.-K. Chin, H.-Y. Tsai, Carbon nanotubes decorated with platinum nanoparticles for field-emission application. ACS Omega 4(13), 15428–15434 (2019)

    Article  CAS  Google Scholar 

  33. B.R. Sathe, B.A. Kakade, A. Kushwaha, M. Aslam, V.K. Pillai, Synthesis of Rh–carbon nanotube based heterostructures and their enhanced field emission characteristics. Chem. Commun. 46(31), 5671–5673 (2010)

    Article  CAS  Google Scholar 

  34. R.G. Forbes, Use of Millikan-Lauritsen plots, rather than Fowler-Nordheim plots, to analyze field emission current-voltage data. J. Appl. Phys. 105(11), 114313 (2009)

    Article  CAS  Google Scholar 

  35. C.J. Edgcombe, Development of Fowler-Nordheim theory for a spherical field emitter. Phys. Rev. B 72(4), 045420 (2005)

    Article  CAS  Google Scholar 

  36. R.G. Forbes, H.B.D. Jonathan, Reformulation of the standard theory of Fowler-Nordheim tunnelling and cold field electron emission. Proc. R Soc. A 463(2087), 2907–2927 (2007)

    Article  Google Scholar 

  37. A.M. Prodan, S.L. Iconaru, C.M. Chifiriuc, C. Bleotu, C.S. Ciobanu, M. Motelica-Heino, S. Sizaret, D. Predoi, Magnetic properties and biological activity evaluation of iron oxide nanoparticles. J. Nanomater. 2013, 1 (2013)

    Google Scholar 

  38. S. Parveen, A. Kumar, S. Husain, M. Husain, Fowler Nordheim theory of carbon nanotube based field emitters. Phys. B 505, 1–8 (2017)

    Article  CAS  Google Scholar 

  39. W.S. Su, T.C. Leung, C.T. Chan, Work function of single-walled and multiwalled carbon nanotubes: first-principles study. Phys. Rev. B 76(23), 235413 (2007)

    Article  CAS  Google Scholar 

  40. He C (2017) Work function of {\alpha}-Fe_ {2} O_ {3}: a DFT calculation. arXiv preprint arXiv:1709.04672 (2017).

Download references

Acknowledgements

The authors Shabeena Saifi and Dr.Shama Parveen are thankful to CSIR for providing funds in the form of JRF and Research Associate, respectively. The authors are also thankful to Jamia Millia Islamia for providing necessary research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zulfequar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saifi, S., Parveen, S., Khan, S. et al. Iron oxide-coated MWCNTs nanohybrid field emitters: a potential cold cathode for next-generation electron sources. J Mater Sci: Mater Electron 31, 17482–17490 (2020). https://doi.org/10.1007/s10854-020-04304-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04304-8

Navigation