Skip to main content
Log in

Weak ferromagnetism, inflated dielectricity with improved resistive property in the morphotropic phase composition of (1 − x) Bi1−yHoyFeO3xBa0.8Ca0.2TiO3 (0.25 ≤ x ≤ 0.4; y = 0.025) ceramic solid solutions

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this investigation, a series of (1 − x) Bi1−yHoyFeO3xBa0.8Ca0.2TiO3 (0.25 ≤ x ≤ 0.4; y = 0.025) ceramic solid solutions were synthesized using a conventional solid-state reaction route. The primary goal of this study was to perceive the significance of substitution on the structural, magnetic, dielectric, and resistive properties of the ceramic solid solution. The investigation suggested the trace of weak ferromagnetism in all of the samples. A methodical XRD-based phase structural study revealed a presence of a morphotropic phase boundary (MPB) in the range of 0.3 ≤ x ≤ 0.35, showing robust dielectric properties in the MPB region, as verified by the dielectric measurements. A room temperature A.C conductivity study and activation energy calculation advocated an improved resistive property in the x = 0.3 sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N.A. Spaldin, R. Ramesh, Advances in magnetoelectric multiferroics. Nature. Mater. 18, 203–212 (2019)

    Article  CAS  Google Scholar 

  2. L.H. Omari, R. Moubah, M. Haddad, Conductivity and electrical impedance of (BaTiO3)0.95-(LaFeO3)0.05 solid solutions. Mater. Chem. Phys. 199, 138–143 (2017)

    Article  CAS  Google Scholar 

  3. L. Zia, G.H. Jaffari, N.A. Awan, J.U. Rahman, S. Lee, Electrical response of mixed-phase (1–x)BiFeO3-xPbTiO3 solid solution: role of tetragonal phase and tetragonality. J. Alloys Compd. 786, 98–108 (2019)

    Article  CAS  Google Scholar 

  4. L. Wang, R. Liang, Z. Zhou, X. Dong, High electrostrain with high Curie temperature in BiFeO3-BaTiO3-based ceramics. Scr. Mater. 164, 62–65 (2019)

    Article  Google Scholar 

  5. D. Wang, A. Khesro, S. Murakami, A. Feteira, Q. Zhao, I.M. Reaney, Temperature-dependent, large electromechanical strain in Nd-doped BiFeO3-BaTiO3 lead-free ceramics. J. Eur. Ceram 37, 1857–1860 (2017)

    Article  CAS  Google Scholar 

  6. N. Wang, A. Jain, Y. Li, F.L. Wang, Y.L. Lu, H. Zhen, Y.G. Wang, F.G. Chen, Investigation of structural, ferroelectric and magnetic properties of Ca modified BiFeO3-BaTiO3 ceramics. Ceram. Int. 46, 3855–3860 (2020)

    Article  CAS  Google Scholar 

  7. H. Zhang, W. Jo, K. Wang, K.G. Webber, Compositional dependence of dielectric and ferroelectric properties in BiFeO3-BaTiO3 solid solutions. Ceram. Int. 40, 4759–4765 (2014)

    Article  CAS  Google Scholar 

  8. Y. Wei, X. Wang, J. Zhu, X. Wang, J. Jia, Dielectric, ferroelectric, and piezoelectric properties of BiFeO3-BaTiO3 ceramics. J. Am. Ceram. Soc. 96, 3163–3168 (2013)

    CAS  Google Scholar 

  9. J. Guo, Z. Ning, D. Fu, J. Cheng, J. Chen, Enhanced piezoelectric strain of BiFeO3-Ba(Zr0.02Ti0.98)O3 lead-free ceramics near the phase boundary. Int. J. Appl. Ceram. Technol. (2019). https://doi.org/10.1111/ijac.13380

    Article  Google Scholar 

  10. M. Zhang, X. Zhang, X. Qi, H. Zhu, Y. Li, Y. Gu, Enhanced ferroelectric, magnetic and magnetoelectric properties of multiferroic BiFeO3-BaTiO3-LaFeO3. Ceram. Int. 44(17), 21269–21276 (2018)

    Article  CAS  Google Scholar 

  11. M. Shariq, D. Kaur, V.S. Chandel, Structural, magnetic and optical properties of multiferroic (BiFeO3)1–x(BaTiO3)x solid solutions. Chin. J. Phys. 55, 2192–2198 (2017)

    Article  CAS  Google Scholar 

  12. M. Zhang, X. Zhang, X. Qi, Y. Li, L. Bao, Y. Gu, Effects of sintering temperature and composition on dielectric, ferroelectric, and magnetoelectric properties of BiFeO3-BaTiO3 solid solutions. Ceram. Int. 43, 16957–16964 (2017)

    Article  CAS  Google Scholar 

  13. M. Habib, M.H. Lee, D.J. Kim, H.I. Choi, M.-H. Kim, W.-J. Kim, T.K. Choi, K.S. Choi, Enhanced piezoelectric performance of donor La3+-doped BiFeO3-BaTiO3 lead-free piezoceramics. Ceram. Int. 46, 7074–7080 (2020)

    Article  CAS  Google Scholar 

  14. S. Huang, Q. Li, L. Yang, J. Xu, C. Zhou, G. Chen, C. Yuan, G. Rao, Enhanced piezoelectric properties by reducing leakage current in Co modified 0.7BiFeO3–0.3BaTiO3 ceramics. Ceram. Int. 44, 8955–8962 (2018)

    Article  CAS  Google Scholar 

  15. G. Zerihun, S. Huang, G. Gong, S. Yuan, Influence of Eu doping on the magnetoelectric and dielectric properties of BiFeO3-Bi0.5Na0.5TiO3 ceramics. Ceram. Int. 41, 6589–6595 (2015)

    Article  CAS  Google Scholar 

  16. Q. Zheng, L. Luo, K.H. Lam, N. Jiang, Y. Guo, D. Lin, Enhanced ferroelectricity, piezoelectricity, and ferromagnetism in Nd-modified BiFeO3-BaTiO3 lead-free ceramics. J. Appl. Phys. 116, 184101 (2014)

    Article  Google Scholar 

  17. C. Behera, A.K. Pattanaik, Structural, dielectric and ferroelectric properties of lead-free Gd-modified BiFeO3–BaTiO3 solid solution. J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-00840-0

    Article  Google Scholar 

  18. X.N. Zhu, M.S. Rahman, Y.J. Wu, X.Q. Liu, Y.H. Huang, G. Liu, R. Guo, X.M. Chen, A.S. Bhalla, Enhanced ferroelectricity, piezoelectricity and ferromagnetism in (Ba0.75Ca0.25)TiO3 modified BiFeO3 multiferroic ceramics. J. Alloys Compd. 658, 973–980 (2016)

    Article  CAS  Google Scholar 

  19. G. Qian, C. Zhu, L. Wang, Z. Tian, C. Yin, C. Li, S. Yuan, Enhanced ferromagnetic, ferroelectric, and dielectric properties in BiFeO3-SrTiO3-Bi0.5Na0.5TiO3 ceramics. J. Electron. Mater. 46, 6717–6726 (2017)

    Article  CAS  Google Scholar 

  20. C. Chakrabarti, Q. Fu, X. Chen, C. Li, B. Meng, Y. Qiu, Yuan S Substitution driven enhancement of ferromagnetic, ferroelectric and leakage properties in multiferroic 0.7Bi1-xErxFeO3–0.3Bi0.5Na0.5TiO3 solid solutions. J. Sol-Gel Sci. Technol. 93, 587–595 (2020)

    Article  CAS  Google Scholar 

  21. B. Ahmmad, M.Z. Islam, A. Billah, M.A. Basith, Anomalous coercivity enhancement with temperature and tunable exchange bias in Gd and Ti co-doped BiFeO3 multiferroics. J. Phys. D 49, 095001 (2016)

    Article  Google Scholar 

  22. P. Kumar, M. Kar, Effect of structural transition on magnetic and dielectric properties of La and Mn co-substituted BiFeO3 ceramics. Mater. Chem. Phys. 148(3), 968–977 (2014)

    Article  CAS  Google Scholar 

  23. G. Huang, X. Chen, D. Ma, G. Liu, H. Zhou, Thermally stable Ba0.8Ca0.2TiO3-Bi(Mg0.5Zr0.5)O3 solid solution with low dielectric loss in a broad temperature usage range. J. Mater. Sci.: Mater. Electron. 27, 6552–6557 (2016)

    CAS  Google Scholar 

  24. Q. Zhou, C. Zhou, H. Yang, G. Chen, W. Li, H. Wang, Dielectric, ferroelectric, and piezoelectric properties of Bi(Ni½Ti1/2)O3-modified BiFeO3-BaTiO3 ceramics with high Curie temperature. J. Am. Ceram. Soc. 95, 3889–3893 (2012)

    Article  CAS  Google Scholar 

  25. J. Liu, X.Q. Liu, X.M. Chen, Ferroelectric and magnetic properties in (1–x)BiFeO3-x (0.5CaTiO3–0.5SmFeO3) ceramics. J. Am. Ceram. Soc. 100, 4045–4057 (2017)

    Article  CAS  Google Scholar 

  26. R. Gotardo, E. Silva, R. Alonso, J. Rosso, D. Silva, G. Santos, K. Silva, L. Cótica, I. Santos, R. Guo, A. Bhalla, Dielectric, magnetic and structural characterizations in Mn-doped 0.9BiFeO3–0.1BaTiO3 compositions. Ferroelectrics 534(1), 95–102 (2018)

    Article  CAS  Google Scholar 

  27. Y. Wang, Y. Pu, X. Li, H. Zheng, Z. Gao, Evolution from ferroelectric to diffused ferroelectric, and relaxor ferroelectric in BaTiO3-BiFeO3 solid solutions. Mater. Chem. Phys. 183, 247–253 (2016)

    Article  CAS  Google Scholar 

  28. Z. Li, W. Peng, C. Zhou, Q. Li, L. Yang, J. Xu, G. Chen, C. Yuan, G. Rao, Enhanced real-time high-temperature piezoelectric responses and ferroelectric scaling behaviors of MgO-doped 0.7BiFeO3–0.3BaTiO3 ceramics. Ceram. Int. 44, 14439–14445 (2018)

    Article  CAS  Google Scholar 

  29. T. Pikula, B. Malesa, D. Oleszak, M. Karolus, Z. Surowiec, V.I. Mitsiuk, E. Jartych, Composition-driven structural and magnetic transitions in mechanically activated (1–x)BiFeO3 (x)BaTiO3 solid solutions. Solid State Commun. 246, 47–53 (2016)

    Article  CAS  Google Scholar 

  30. S. Cheng, L. Zhao, B.-P. Zhang, K.-K. Wang, Lead-free 0.7BiFeO3–0.3BaTiO3 high-temperature piezoelectric ceramics: nano-BaTiO3 raw powder leading to a distinct reaction path and enhanced electrical properties. Ceram. Int. 45, 10438–10447 (2019)

    Article  CAS  Google Scholar 

  31. C. Chakrabarti, Q. Fu, X. Chen, Y. Qiu, S. Yuan, C. Li, Modulation of magnetic, ferroelectric and leakage properties by HoFeO3 substitution in multiferroic 0.7BiFeO3–0.3Ba0.8Ca0.2TiO3 solid solutions. Ceram. Int. 46, 212–217 (2020)

    Article  CAS  Google Scholar 

  32. S.T. Dadami, S. Matteppanavar, I. Shivaraja, S. Rayaprol, S.K. Deshpande, M.V. Murugendrappa, B. Angadi, Structural, dielectric and conductivity studies of PbFe0.5Nb0.5O3-BiFeO3 multiferroic solid solution. J. Alloys Compd. 724, 787–798 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was aided by the National Natural Science Foundation of China (Grant Nos. 11474111 and 11604281). We are cordially thankful to the staff and the members of the Analysis Center of Huazhong University of Science and Technology for their support for various measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songliu Yuan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakrabarti, C., Fu, Q., Ali, W. et al. Weak ferromagnetism, inflated dielectricity with improved resistive property in the morphotropic phase composition of (1 − x) Bi1−yHoyFeO3xBa0.8Ca0.2TiO3 (0.25 ≤ x ≤ 0.4; y = 0.025) ceramic solid solutions. J Mater Sci: Mater Electron 31, 13111–13117 (2020). https://doi.org/10.1007/s10854-020-03862-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03862-1

Navigation