Skip to main content

Advertisement

Log in

Synthesis of nanocauliflower ZnO photocatalyst by potato waste and its photocatalytic efficiency against dye

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Using different amount of potato peels, ZnO photocatalysts (ZO-PC) have been prepared by facile combustion process followed by the calcination at 500 °C for 10 min, and their obtained nanomaterials have been investigated through various techniques like powder X-ray diffraction (XRD), scanning electron microscope (SEM) combined with EDX, transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR), and UV–Vis spectroscopy in DRS mode. Moreover, the spectrophotometry technique has been employed to investigate the degradation of methylene blue (MB) under UV irradiation light (λ < 400 nm) by fabricated ZO-PCs. Among them, the lowest peel-containing sample was exhibited enhanced photocatalytic activity as compared to others also optical bandgap energy (Eg) was increased with increasing of peels from 3.39 to 3.49 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L.W. Perelo, Review: in situ and bioremediation of organic pollutants in aquatic sediments. J. Hazard. Mater. 177, 81–89 (2010)

    CAS  Google Scholar 

  2. H.H. Mohamed, Sonochemical synthesis of ZnO hollow microstructure/reduced graphene oxide for enhanced sunlight photocatalytic degradation of organic pollutants. J. Photochem. Photobiol. A 353, 401–408 (2018)

    CAS  Google Scholar 

  3. S.K. Kansal, N. Kaur, Synthesis and characterization of titania nanoparticles for the photocatalytic degradation of 2-chlorophenol. Energy Environ. Focus 2, 163–167 (2013)

    Google Scholar 

  4. J. Gong, F. Meng, Z. Fan, H. Li, Z. Du, Template-free controlled hydrothermal synthesis for monodisperse flowerlike porous CeO2 microspheres and their superior catalytic reduction of NO with NH3. J. Alloys Compd. 690, 677–687 (2017)

    CAS  Google Scholar 

  5. A.V. Borhade, D.R. Tope, B.K. Uphade, An efficient photocatalytic degradation of methyl blue dye by using synthesised PbO nanoparticles. Eur. J. Chem. 9, 705–715 (2012)

    CAS  Google Scholar 

  6. R.S. Rana, P. Singh, V. Kandari, R. Singh, R. Dobhal, S. Gupta, A review on characterization and bioremediation of pharmaceutical industries’ wastewater: an Indian perspective. Appl. Water Sci. 7, 1–12 (2017)

    Google Scholar 

  7. G.Z. Kyzas, J. Fu, K.A. Matis, The change from past to future for adsorbent materials in treatment of dyeing wastewaters. Materials 6, 5131–5158 (2013)

    Google Scholar 

  8. G.Z. Kyzas, M. Kostoglou, Green adsorbents for wastewaters: a critical review. Materials 7, 333–364 (2014)

    Google Scholar 

  9. J. Liu, H. Yu, L. Zhang, G. Zhang, J. Qu, H. Lv, Effect of greenhouse environment on organics migrating from agricultural high-density polyethylene (HDPE) pipes. Sens. Lett. 11, 1293–1297 (2013)

    Google Scholar 

  10. J. Wang, J. Liu, H. Xu, S. Ji, J. Wang, X. Tian, Hierarchical m-BiVO4 microdendrites: hydrothermal template-free crystallization and their primary visible-light photocatalyst application. Energy Environ. Focus 2, 79–84 (2013)

    Google Scholar 

  11. M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review. Adv. Colloid Interfaces Sci. 209, 172–184 (2014)

    CAS  Google Scholar 

  12. M.A. Quiroz, E.R. Bandala, C.A. Martinez-Huitle, Advanced oxidation processes (AOPs) for removal of pesticides from aqueous media, in Pesticides—Formulations, Effects, Fate, Ch.34, ed. by M. Stoytcheva (InTech, Mexico, 2011), pp. 685–705

    Google Scholar 

  13. V. Binas, D. Venieri, D. Kotzias, G. Kiriakidis, Modified TiO2 based photo catalysts for improved air and health quality. J. Materiomics 3, 3–16 (2017)

    Google Scholar 

  14. A.O. Ibhadon, P. Fitzpatrick, Heterogeneous photocatalysis: recent advances and applications. Catalysts 3, 189–218 (2013)

    CAS  Google Scholar 

  15. A.K. Singh, U.T. Nakate, Photocatalytic properties of microwave-synthesized TiO2 and ZnO nanoparticles using malachite green dye. J. Nanopart. 2013, 7 (2013)

    Google Scholar 

  16. S. Panchal, R. Vyas, Use of undoped and iron doped zirconium dioxide in photocatalytic degradation of malachite green. Sci. Revs. Chem. Commun. 3, 190–197 (2013)

    Google Scholar 

  17. E. Regulska, D.M. Brus, J. Karpinska, Photocatalytic decolourization of direct yellow 9 on titanium and zinc oxides. Int. J. Photoenergy (2013). https://doi.org/10.1155/2013/975356

    Article  Google Scholar 

  18. S.Y. Pung, W.P. Lee, A. Aziz, Kinetic study of organic dye degradation using ZnO particles with different morphologies as a photocatalyst. Int. J. Inorg. Chem. (2012). https://doi.org/10.1155/2012/608183

    Article  Google Scholar 

  19. S. Khan, M. Faisal, M.M. Rahman, A. Jamal, Exploration of CeO2 nanoparticles as a chemi-sensor and photo-catalyst for environmental applications. Sci. Total Environ. 409(2011), 2987–2992 (2011)

    CAS  Google Scholar 

  20. B. Karunagaran, P. Uthirakumar, S.J. Chung, S. Velumani, E.K. Suh, TiO2 thin film gas sensor for monitoring ammonia. Mater. Charact. 58, 680–684 (2007)

    CAS  Google Scholar 

  21. T.I. Edison, M.G. Sethuraman, Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochem. 47, 1351–1357 (2012)

    CAS  Google Scholar 

  22. Z. Fan, F. Meng, M. Zhang, Z. Wu, Z. Sun, A. Lia, Solvothermal synthesis of hierarchical TiO2 nanostructures with tunable morphology and enhanced photo catalytic activity. Appl. Surf. Sci. 360, 298–305 (2016)

    CAS  Google Scholar 

  23. R. Qin, F. Meng, M.W. Khan, B. Yu, H. Li, Z. Fan, J. Gong, Fabrication and enhanced photocatalytic property of TiO2-ZnO composite photocatalysts. Mater. Lett. 240, 84–87 (2019)

    CAS  Google Scholar 

  24. Z. Fan, F. Meng, J. Gong, H. Li, Y. Hu, Enhanced photocatalytic activity of hierarchical flower-like CeO2/TiO2 heterostructures. Mater. Lett. 175, 36–39 (2016)

    CAS  Google Scholar 

  25. B. Yu, F. Meng, M.W. Khan, R. Qin, X. Liu, Facile synthesis of Ag NPs modified TiO2@g-C3N4 heterojunction composites with enhanced photocatalytic activity under simulated sunlight. Mater. Res. Bull. 121, 110641 (2020)

    CAS  Google Scholar 

  26. F. Meng, X. Song, Z. Sun, Photocatalytic activity of TiO2 thin films deposited by RF magnetron sputtering. Vacuum 83, 1147–1151 (2009)

    CAS  Google Scholar 

  27. F. Meng, Z. Sun, Enhanced photocatalytic activity of silver nanoparticles modified TiO2 thin films prepared by RF magnetron sputtering. Mater. Chem. Phys. 118, 349–353 (2009)

    CAS  Google Scholar 

  28. B. Yu, F. Meng, M.W. Khan, R. Qina, X. Liu, Synthesis of hollow TiO2@g-C3N4/Co3O4 core–shell microspheres for effective photooxidation degradation of tetracycline and MO. Ceram. Int. 46, 13133–13143 (2020)

    CAS  Google Scholar 

  29. A.E. Suliman, Y. Tang, L. Xu, Preparation of ZnO nanoparticles and nanosheets and their application to dye-sensitized solar cells. Sol. Energy Mater. Sol. Cell 91, 1658–1662 (2007)

    Google Scholar 

  30. R. Wahab, I.H. Hwang, Y.S. Kim, J. Musarrat, M.A. Siddiqui, H.K. Seo, S.K. Tripathy, H.S. Shin, Non-hydrolytic synthesis and photo-catalytic studies of ZnO nano particles. Chem. Eng. J. 175, 450–457 (2011)

    CAS  Google Scholar 

  31. A. Yu, J. Qian, H. Pan, Y. Cui, M. Xu, L. Tu, Q. Chai, X. Zhou, Microlotus constructed by Fe-doped ZnO hierarchically porousnanosheets: preparation, characterization and gas sensing property. Sens. Actuators B 158, 9–16 (2011)

    CAS  Google Scholar 

  32. R. Wahab, I.H. Hwang, Y.S. Kim, H.S. Shin, Photocatalytic activity of zinc oxide micro-flowers synthesized via solution method. Chem. Eng. J. 168, 359 (2011)

    CAS  Google Scholar 

  33. R. Li, S. Yabe, M. Yamashita, S. Momose, S. Yoshida, S. Yin, T. Sato, Synthesis and UV-shielding properties of ZnO and CaO doped CeO2 via soft solution chemical process. Solid State Ion. 151, 235–241 (2002)

    CAS  Google Scholar 

  34. R. Salehi, M. Arami, N.M. Mahmoodi, H. Bahrami, S. Khorramfar, Novel bio compatible composite (Chitosan-ZnO nanoparticles): preparation, characterization and dye adsorption properties. Colloids Surf. B 80, 86–93 (2010)

    CAS  Google Scholar 

  35. N. Mir, M. Salavati-Niasari, F. Davar, Preparation of ZnO nano-flowers and Zn glycerolate nanoplates using inorganic precursors via a convenient rout and application in dye sensitized solar cells. Chem. Eng. J. 181–182, 779–789 (2012)

    Google Scholar 

  36. M. Salavati-Niasari, F. Davar, M. Mazaheri, Preparation of ZnO nanoparticles from [bis(acetylacetonato) zinc(II)]–oleylamine complex by thermal decomposition. Mater. Lett. 62(12–13), 1890–1892 (2008)

    CAS  Google Scholar 

  37. D. Oh, W.J. Cho, T.W. Kim, Optical properties of ZnO nanoparticles embedded in a silicon nitride layer formed by sputtering and thermal treatment. Curr. Appl. Phys. 9, e173–e175 (2009)

    Google Scholar 

  38. R.K. Jamal, M.A. Hameed, K.A. Adem, Optical properties of nanostructured ZnO prepared by a pulsed laser deposition technique. Mater. Lett. 132, 31–33 (2014)

    CAS  Google Scholar 

  39. C. Zhao, Y. Huang, J.T. Abiade, Ferromagnetic ZnO nanoparticles prepared by pulsed laser deposition in liquid. Mater. Lett. 85, 164–167 (2012)

    CAS  Google Scholar 

  40. K. Ogata, T. Komuro, K. Hama, K. Koike, S. Sasa, M. Inoue, M. Yano, Control of chemical bonding of the ZnO surface grown by molecular beam epitaxy. Appl. Surf. Sci. 237, 348–351 (2004)

    CAS  Google Scholar 

  41. K. Li, H. Luo, T. Ying, One-step, solid-state reaction to ZnO nanoparticles in the presence of ionic liquid. Mater. Sci. Semicond. Process 14, 184–187 (2011)

    CAS  Google Scholar 

  42. M.K. Debanath, S. Karmakar, Study of blueshift of optical band gap in zinc oxide (ZnO) nanoparticles prepared by low-temperature wet chemical method. Mater. Lett. 111, 116–119 (2013)

    CAS  Google Scholar 

  43. W.M. Lee, Y.J. An, Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: no evidence of enhanced algal toxicity under UV pre-irradiation. Chemosphere 91, 536–544 (2013)

    CAS  Google Scholar 

  44. S.M. Roopan, G. Elango, Exploitation of Cocos nucifera a non-food toward the biological and nanobiotechnology field. Ind. Crop. Prod. 67, 130–136 (2015)

    CAS  Google Scholar 

  45. R. Atchudana, T.N.J.I. Edison, S. Perumal, Y.R. Lee, Green synthesis of nitrogen-doped graphitic carbon sheets with use of Prunus persica for supercapacitor applications. Appl. Surf. Sci. 393, 276–286 (2017)

    Google Scholar 

  46. G. Zhang, X. Shen, Y. Yang, Facile synthesis of monodisperse porous ZnO spheres by a soluble starch-assisted method and their photocatalytic activity. J. Phys. Chem. C 115, 7145–7152 (2011)

    CAS  Google Scholar 

  47. F. Renault, N. Morin-Crini, F. Gimbert, P.-M. Badot, G. Crini, Cationized starch-based material as a new ion exchanger adsorbent for the removal of CI acid blue 25 from aqueous solutions. Bioresour. Technol. 99, 7573–7586 (2008)

    CAS  Google Scholar 

  48. A.K. Zak, W.H.A. Majid, M.R. Mahmoudian, M. Darroudi, R. Yousefi, Starch-stabilized synthesis of ZnO nanopowders at low temperature and optical properties study. Adv. Powder Technol. 24, 618–624 (2013)

    Google Scholar 

  49. G. Srinivasan, R.R. Kumar, J. Kumar, Li doped and undoped ZnO nanocrystalline thin films: a comparative study of structural and optical properties. J. Sol–Gel Sci. Technol. 43, 171–177 (2007)

    CAS  Google Scholar 

  50. A. Al-Hajry, A. Umar, Y.B. Hahn, D.H. Kim, Growth, properties and dye-sensitized solar cells–applications of ZnO nanorods grown by low-temperature solution process. Superlattices Microstruct. 45, 529–534 (2009)

    CAS  Google Scholar 

  51. R.A. Nyquist, R.O. Kagel, Infrared Spectra of Inorganic Compounds (Academic Press Inc, London, 1971), p. 220

    Google Scholar 

  52. L. Wu, Y. Wu, L. Wei, Preparation of ZnO nanorods and optical characterizations. Physica E 28(2005), 76–82 (2005)

    CAS  Google Scholar 

  53. V.H. Pham, T.V. Cuong, T.D. Nguyen-Phan, H.D. Pham, E.J. Kim, S.H. Hur, E.W. Shin, S. Kim, J.S. Chung, One-step synthesis of superior dispersion of chemically converted graphene in organic solvents. Chem. Commun. 46(24), 4375–4377 (2010)

    CAS  Google Scholar 

  54. B. Vincent Crist, Handbook of Monochromatic XPS Spectra: The Elements and Native Oxides (Wiley, Chichester, 2000), p. 510

    Google Scholar 

  55. Y.H. Ni, X.W. Wei, J.M. Hong, Y. Ye, Hydrothermal preparation and optical properties of ZnO nanorods. Mater. Sci. Eng. B 121, 42–47 (2005)

    Google Scholar 

  56. S.C. Lyu, Y. Zhang, H. Ruh, H.J. Lee, H.W. Shim, E.K. Suh, C.J. Lee, Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires. Chem. Phys. Lett. 363, 134–138 (2002)

    CAS  Google Scholar 

  57. X. Zhao, M. Li, X. Lou, Sol–gel assisted hydrothermal synthesis of ZnO microstructures: morphology control and photocatalytic activity. Adv. Powder Technol. 25, 372–378 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the King Saud University, Deanship of Scientific Research, College of Science Research Centre for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fahad A. Alharthi or Naushad Ahmad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alharthi, F.A., Al-Zaqri, N., El marghany, A. et al. Synthesis of nanocauliflower ZnO photocatalyst by potato waste and its photocatalytic efficiency against dye. J Mater Sci: Mater Electron 31, 11538–11547 (2020). https://doi.org/10.1007/s10854-020-03701-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03701-3

Navigation