Skip to main content
Log in

Study of effect of Dy substitution on structural, dielectric, impedance and magnetic properties of bismuth ferrite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This communication mainly reports the synthesis and characterization of dysprosium (Dy)-doped bismuth ferrite [i.e., Bi(Fe0.95Dy0.05)O3 (referred as BFDO5)] compound. A conventional high-temperature solid-state reaction technique has been utilized for synthesizing the material at a temperature of 800 °C. The structural study of the prepared sample, carried out using X-ray diffraction data, reveals the creation of a single-phase compound having an orthorhombic crystal structure. The average crystallite size, obtained from the measurement of high-intensity X-ray diffraction peaks of the BFDO5 material, was found to be 38 nm. The purity of the prepared compound and concentration of its constituent elements were confirmed by energy dispersive X-ray spectroscopy (EDXS) data. The field effect scanning electron microscope (FESEM) image clearly shows the surface morphology and regular distribution of the composite grains over its surface. Detailed analysis of the dielectric and impedance data, measured in a broad range of frequency (1–1000 kHz) and temperature (25–500 °C), has shown a significant improvement in the dielectric and electrical properties of the prepared material. The electrical polarization measurement, done by PE hysteresis loop tracer, shows the existence and enhancement of ferroelectric property of the material. Room temperature measurement of its magnetization was carried out by using vibrating sample magnetometer that shows a significant enhancement in a remnant magnetization as compared to pure bismuth ferrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.W. Nan, G. Liu, Y. Lin, H. Chen, Magnetic-field-induced electric polarization in multiferroic nanostructures. Phys. Rev. Lett. 94, 197203 (2005)

    Google Scholar 

  2. G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463 (2009)

    CAS  Google Scholar 

  3. S.W. Cheong, M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13 (2007)

    CAS  Google Scholar 

  4. R. Ramesh, N.A. Spaldin, Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21 (2007)

    CAS  Google Scholar 

  5. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759 (2006)

    CAS  Google Scholar 

  6. Z.J. Li, Z.L. Hou, W.L. Song, X.D. Liu, W.Q. Cao, X.H. Shao, M.S. Cao, Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption. Nanoscale 8, 10415 (2016)

    CAS  Google Scholar 

  7. C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008)

    Google Scholar 

  8. L. Chen, L. Zheng, Y. He, J. Zhang, Z. Mao, X. Chen, The local distortion and electronic behavior in Mn doped BiFeO3. J. Alloy. Compd. 633, 216 (2015)

    CAS  Google Scholar 

  9. M. Li, M. Ning, Y. Ma, Q. Wu, C.K. Ong, Room temperature ferroelectric, ferromagnetic and magneto-electric properties of Ba-doped BiFeO3 thin films. J. Phys. D Appl. Phys. 40, 1603 (2007)

    CAS  Google Scholar 

  10. V.A. Khomchenko, D.A. Kiselev, J.M. Vieira, L. Jian, A.L. Kholkin, A.M.L. Lopes, Y.G. Pogorelov, J.P. Araujo, M. Maglione, Effect of diamagnetic Ca, Sr, Pb, and Ba substitution on the crystal structure and multiferroic properties of the BiFeO3 perovskite. J. Appl. Phys. 103, 024105 (2008)

    Google Scholar 

  11. G. Catalan, K. Sardar, N.S. Church, J.F. Scott, R.J. Harrison, S.A.T. Redfern, Effect of chemical substitution on the Néel temperature of multiferroic Bi1–xCaxFeO3. Phys. Rev. B 79, 212415 (2009)

    Google Scholar 

  12. B. Bhushan, A. Basumallick, N.Y. Vasanthacharya, S. Kumar, D. Das, Sr induced modification of structural, optical and magnetic properties in Bi1xSrxFeO3 (x = 0, 0.01, 0.03, 0.05 and 0.07) multiferroic nanoparticles. Solid State Sci. 12, 1063 (2010)

    CAS  Google Scholar 

  13. D.P. Dutta, A.K. Tyagi, Effect of Sm3+ and Zr4+ co-doping on the magnetic, ferroelectric and magnetodielectric properties of sonochemically synthesized BiFeO3 nanorods. Appl. Surf. Sci. 450, 429 (2018)

    CAS  Google Scholar 

  14. A. Mukherjee, S. Basu, L.A.W. Green, N.T.K. Thanh, M. Pal, Enhanced multiferroic properties of Y and Mn co-doped multiferroic BiFeO3 nanoparticles. J. Mater. Sci. 50, 1891 (2015)

    CAS  Google Scholar 

  15. F.T. Lin, Q.Q. Yu, L.Y. Deng, Z.J. Zhang, X.Y. He, A.Y. Liu, W.Z. Shi, Effect of La/Cr codoping on structural transformation, leakage, dielectric and magnetic properties of BiFeO3 ceramics. J. Mater. Sci. 52, 1 (2017)

    Google Scholar 

  16. Y.J. Zheng, G.Q. Tan, A. Xia, H.J. Ren, Structure and multiferroic properties of multi-doped Bi1-xErxFe0.96Mn0.02Co0.02O3 thin films. J. Alloys Compd. 684, 438–444 (2016)

    CAS  Google Scholar 

  17. Y.Y. Zhu, C.Y. Quan, Y.H. Ma, Q. Wang, W.W. Mao, X.F. Wang, J. Zhang, Y.G. Min, J.P. Yang, X.A. Li, W. Huang, Effect of Eu, Mn co-doping on structural, optical and magnetic properties of BiFeO3 nanoparticles. Mater. Sci. Semicond. Process. 57, 178–184 (2017)

    CAS  Google Scholar 

  18. M.R. Islam, M.S. Islam, M.A. Zubair, H.M. Usama, M.S. Azam, A. Sharif, Evidence of super paramagnetism and improved electrical properties in Ba and Ta co-doped BiFeO3 ceramics. J. Alloys Compd. 735, 2584–2596 (2018)

    CAS  Google Scholar 

  19. V. Kumar, S. Singh, Improved structure stability, optical and magnetic properties of Ca and Ti co-substituted BiFeO3 nanoparticles. Appl. Surf. Sci. 386, 78–83 (2016)

    CAS  Google Scholar 

  20. X.Y. Yuan, L. Shi, J.Y. Zhao, S.M. Zhou, Y. Li, C.Z. Xie, J.H. Guo, Sr and Pb co-doping effect on the crystal structure, dielectric and magnetic properties of BiFeO3 multiferroic compounds. J. Alloys Compd. 708, 93–98 (2017)

    CAS  Google Scholar 

  21. J.Y. Chen, W. Yao, D. Yuan, Combined effects of Bi deficiency and Mn substitution on the structural transformation and functionality of BiFeO3 films. J. Appl. Phys. 116, 174102 (2014)

    Google Scholar 

  22. V.A. Khomchenko, D.V. Karpinsky, A.L. Kholkin, N.A. Sobolev, G.N. Kakazei, J.P. Araujo, I.O. Troyanchuk, B.F.O. Costa, J.A. Paixão, Rhombohedral-to-orthorhombic transition and multiferroic properties of Dy-substituted BiFeO3. J. Appl. Phys. 108(7), 074109 (2010)

    Google Scholar 

  23. V.A. Khomchenko, D.A. Kiselev, I.K. Bdikin, N.A. Sobolev, G.N. Kakazei, J.P. Araujo, I.O. Troyanchuk, B.F.O. Costa, J.A. Paixão, Crystal structure and multiferroic properties of Gd-substituted BiFeO3. Appl. Phys. Lett. 93(26), 262905 (2008)

    Google Scholar 

  24. D. Varshney, P. Sharma, S. Satapathy, P.K. Gupta, Structural, magnetic and dielectric properties of Pr-modified BiFeO3 multiferroic. J. Alloy. Compd. 584, 232–239 (2014)

    CAS  Google Scholar 

  25. S.T. Zhang, Y. Zhang, M.H. Lu, C.L. Du, Y.F. Chen, Z.G. Liu, Y.Y. Zhu, N.B. Ming, Substitution-induced phase transition and enhanced multiferroic properties of Bi1−xLaxFeO3 ceramics. Appl. Phys. Lett. 88(16), 162901 (2006)

    Google Scholar 

  26. N. Jeon, D. Rout, W. Kim, S.L. Kang, Enhanced multiferroic properties of single-phase BiFeO3 bulk ceramics by Ho doping. Appl. Phys. Lett. 98, 072901 (2011)

    Google Scholar 

  27. G.L. Yuan, S.W. Or, J.M. Liu, Z.G. Liu, Structural transformation and ferro-electromagnetic behavior in single phase Bi1−xNdxFeO3 multiferroic ceramics. Appl. Phys. Lett. 89(5), 052905 (2006)

    Google Scholar 

  28. L. Thansanga, A. Shukla, N. Kumar, R.N.P. Choudhary, Study of effect of Gd substitution at the Fe site on structural, dielectric and electrical characteristics of BiFeO3. Appl. Phys. A. 125(11), 764 (2019)

    Google Scholar 

  29. N. Kumar, A. Shukla, N. Kumar, S. Hajra, S. Sahoo, R.N.P. Choudhary, Structural, bulk permittivity and impedance spectra of electronic material: Bi(Fe0.5La0.5)O3. J. Mater. Sci. Mater. Electron. 30, 1919 (2019)

    CAS  Google Scholar 

  30. E. Wul, PowdMult: An Interactive Powder Diffraction Data Interpretation and Index Program (School of Physical Science, Flinders University of South Australia, Adelaide, 1989)

    Google Scholar 

  31. K. Parida, S.K. Dehury, R.N.P. Choudhary, Structural, electrical and magnetoelectric characteristics of BiMgFeCeO6 ceramics. Phys. Lett. A. 380(48), 4083–4091 (2016)

    CAS  Google Scholar 

  32. K.S. Kumar, C. Venkateswaran, D. Kannan, B. Tiwari, M.S.R. Rao, Mechanical milling assisted synthesis of Ba-Mn co-substituted BiFeO3 ceramics and their properties. J. Phys. D. Appl. Phys. 45, 415302 (2012)

    Google Scholar 

  33. K. Jawahar, R.N.P. Choudhary, Structural and dielectric properties of Y3/2Bi3/2Fe5O12. Mater. Lett. 62, 911–913 (2008)

    CAS  Google Scholar 

  34. T. Acharya, R.N.P. Choudhary, Structural, ferroelectric and electrical properties of NiTiO3 ceramic. J. Electron. Mater. 44, 271–280 (2015)

    CAS  Google Scholar 

  35. P. Ganguli, S. Devi, A.K. Jha, K.L. Deori, Dielectric and pyroelectric studies of tungsten-bronze structured Ba5SmTi3Nb7O30 ferroelectric ceramics. Ferroelectrics 381, 111 (2009)

    Google Scholar 

  36. C.G. Koop, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83, 121–124 (1951)

    Google Scholar 

  37. M. AzizarRahman, A.K.M. AktherHossain, Relaxation mechanism of (x)Mn0.45Ni0.05Zn0.50Fe2O4+(1–x)BaZr0.52Ti0.48O3 multiferroic material. Phys. Scr. 89(11), 115811 (2014)

    Google Scholar 

  38. J. Plocharski, W. Wieczoreck, Impedance spectroscopy and phase structure of PEO NaI complexes. Solid State Ion. 28, 1014 (1998)

    Google Scholar 

  39. Z. Lu, J.P. Bonnet, J. Ravez, P. Hagenmuller, Correlation between low frequency dielectric dispersion (LFDD) and impedance relaxation in ferroelectric ceramic Pb2KNb4TaO15. Solid State Ion. 57, 235–244 (1992)

    CAS  Google Scholar 

  40. C.K. Suman, K. Prasad, R.N.P. Choudhary, Complex impedance studies on tungsten-bronze electroceramic Pb2Bi3LaTi5O18. J. Mater. Sci. 41, 369–375 (2006)

    CAS  Google Scholar 

  41. M.A. Ahmed, S.F. Mansour, M.A. Abdo, Electrical properties of Cu substituted Co nano ferrite. Phys. Scr. 86, 025705 (2012)

    Google Scholar 

  42. S. Sahoo, P.K. Mahapatra, R.N.P. Choudhary, M.L. Nandagoswami, A. Kumar, Structural, electrical and magnetic characteristics of improper multiferroic: GdFeO3. Mater. Res. Express 3, 065017 (2016)

    Google Scholar 

  43. I.M. Hodge, M.D. Ingram, A.R. West, A new method for analysing the ac behaviour of polycrystalline solid electrolytes. J. Electron. Anal. Chem. 58, 429–432 (1975)

    CAS  Google Scholar 

  44. J.R. Macdonald, Note on the parameterization of the constant-phase admittance element. Solid State Ionics 13, 147–149 (1984)

    CAS  Google Scholar 

  45. S. Hajra, S. Sahoo, R. Das, R.N.P. Choudhary, Structural, dielectric and impedance characteristics of (Bi0.5Na0.5)TiO3-BaTiO3 electronic system. J. Alloy. Compd. 750, 507–514 (2018)

    CAS  Google Scholar 

  46. A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673–679 (1977)

    CAS  Google Scholar 

  47. K.S. Rao, K.C.V. Rajulu, B. Tilak, A. Swathi, Effect of Ba2+ in BNT ceramics on dielectric and conductivity properties. Nat. Sci. 2, 357–367 (2010)

    CAS  Google Scholar 

  48. R.N.P. Choudhary, D.K. Pradhan, C.M. Tirado, G.E. Bonilla, R.S. Katiyar, Effect of La substitution on structural and electrical properties of Ba(Fe2/3W1/3)O3 nanoceramics. J. Mater. Sci. 42, 7423–7432 (2007)

    CAS  Google Scholar 

  49. B.N. Parida, P.R. Das, R. Padhee, R.N.P. Choudhary, Phase transition and conduction mechanism of rare earth based tungsten-bronze compounds. J. Alloys Compd. 540, 267–274 (2012)

    CAS  Google Scholar 

  50. N. Kumar, A. Shukla, N. Kumar, R.N.P. Choudhary, Structural, electrical and magnetic properties of eco-friendly complex multiferroic material: Bi(Co0.35Ti0.35Fe0.30)O3. Ceram. Int. 45(1), 822–831 (2019)

    CAS  Google Scholar 

  51. B. Dhanalakshmi, P. Kollu, B. Chandra Sekhar, B. Parvatheeswara Rao, P.S.V. Subba Rao, Enhanced magnetic and magnetoelectric properties of Mn doped multiferroic ceramics. Ceram. Int. 43, 9272–9275 (2017)

    CAS  Google Scholar 

  52. X.Q. Zhang, Y. Sui, X.J. Wang, Y. Wang, Z. Wang, Effect of Eu substitution on the crystal structure and multiferroic properties of BiFeO3. J. Alloy. Compd. 507, 157–161 (2010)

    CAS  Google Scholar 

  53. S. Riaz, F. Majid, S.M.H. Shah, S. Naseem, Enhanced magnetic and structural properties of Ca doped BiFeO3 thin films. Indian J. Phys. 88(10), 1037–1044 (2014)

    CAS  Google Scholar 

  54. F. Huang, X. Lu, W. Lin, X. Wu, Y. Kan, J. Zhu, Effect of Nd dopant on magnetic and electric properties of BiFeO3 thin films prepared by metal organic deposition method. Appl. Phys. Lett. 89, 242914 (2006)

    Google Scholar 

Download references

Acknowledgement

The author Dr. Alok Shukla thankfully acknowledges the financial support received from SERB-DST, Government of India, New Delhi, in the form of Research Project No. EMR/2015/002420.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Shukla.

Ethics declarations

Conflict of interest

The authors stated no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thansanga, L., Shukla, A., Kumar, N. et al. Study of effect of Dy substitution on structural, dielectric, impedance and magnetic properties of bismuth ferrite. J Mater Sci: Mater Electron 31, 10006–10017 (2020). https://doi.org/10.1007/s10854-020-03545-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03545-x

Navigation