Skip to main content
Log in

Elucidation of the properties of Lithium bis(2-methyllactato) borate monohydrate crystal for laser applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lithium bis(2-methyllactato) borate monohydrate (LiMB) a semiorganic crystal is grown by solvent evaporation process. Sharp peaks present in powder XRD (PXRD) pattern reveals the good crystallinity. Linear transmission window is observed from 220 to 1100 nm. Functional groups such as CH3, OH and B–O present in the crystal structure are established through FTIR and FT-Raman vibrational analyses. 1H NMR and 13C NMR spectroscopy confirms molecular structure of LiMB crystal. The organic part of LiMB is elucidated through the observed chemical shifts. The influence of intermolecular interactions was well identified and established. Thermal stability of LiMB extends upto 218 °C. The presence of electron delocalization and intermolecular interaction enhances the third-order susceptibility (χ3) and it is 4.5517 × 10–5 esu. Nonlinear refractive index (n2) and nonlinear absorption coefficient (β) are also found. The self-defocussing and reverse saturable absorption behavior of grown crystal made it useful for Q-switching, optical pulse shorteners and optical energy limiters applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. Zhang, Y.L. Song, X. Wang, Coord. Chem. Rev. 251, 111–117 (2007)

    Article  CAS  Google Scholar 

  2. P.N. Prasad, D.J. Williams, Introduction to Nonlinear Optical Effect in Molecules and Polymers (Wiley, New York, 1991), pp. 2–10

    Google Scholar 

  3. M. Spasenovi, M. Betz, L. Costa, H.M. Van Driel, Phys. Rev. B 77, 085201–085207 (2008)

    Article  Google Scholar 

  4. A. Joseph, I.J.D. Ebenezar, C.R. Raja, Optik 123, 1436–1439 (2012)

    Article  CAS  Google Scholar 

  5. M. Jazbinsek, L. Mutter, P. Gunter, IEEE J. Sel. Top. Quantum Electron. 14, 1298–1311 (2008)

    Article  CAS  Google Scholar 

  6. J. Zyss, Molecular Nonlinear Optics: Materials Physics and Devices (Academic Press, London, 1987)

    Google Scholar 

  7. J. Bandan, R. Hierle, A. Perigand, J. Zyss, Nonlinear Optical Properties of Organic Molecules and Polymeric Materials (American Chemical Society, Washington, DC, 1993)

    Google Scholar 

  8. W. Denk, J.K. Strickler, W.W. Webb, Science 248, 73–76 (1990)

    Article  CAS  Google Scholar 

  9. R. Aarthi, C.R. Raja, J. Mater. Sci 30(9), 8698–8704 (2019)

    CAS  Google Scholar 

  10. C.C. Corredor, Z.L. Huang, K.D. Belfield, A.R. Morales, M.V. Bondar, Chem. Mater. 19, 5165–5173 (2007)

    Article  CAS  Google Scholar 

  11. J.H. Klein-Wiele, M.A. Bader, I. Bauer, S. Soria, P. Simon, G. Marowsky, Synth. Met. 127, 53–57 (2002)

    Article  CAS  Google Scholar 

  12. Z. Zang, Appl. Opt. 52, 5701–5706 (2013)

    Article  CAS  Google Scholar 

  13. Z. Zang, Y. Zhang, Appl. Opt. 51, 3424–3430 (2012)

    Article  CAS  Google Scholar 

  14. Z.-G. Zang, Y.-J. Zhang, J. Mod. Opt. 59(2), 161–165 (2012)

    Article  CAS  Google Scholar 

  15. J.L. Allen, E. Paillard, P.D. Boyle, W.A. Henderson, Acta Cryst. E. 68, 749 (2012)

    Article  Google Scholar 

  16. P.M. Bhat, V.U. Rao, H.S. Nagaraja, J. Cryst. Growth 236, 318–322 (2002)

    Article  Google Scholar 

  17. O. Akgul, N.B. Acarali, N. Tugrul, E.M. Derum, S. Piskin, Periodic di Mineralogia 83(1), 77–88 (2014)

    Google Scholar 

  18. R.L. Frost, R. Scholz, A. Lopez, Y. Xi, F.M. Belotti, Spectrosc. Lett. 47(7), 512–517 (2014)

    Article  CAS  Google Scholar 

  19. R. Carballo, B. Covelo, E. Garcia-Martinez, E.M. Vaz Lopez, A. Castineiras, J. Niclos, Polyhedron 22, 1051–1057 (2003)

    Article  CAS  Google Scholar 

  20. Y. Cai, J. Lv, J. Feng, J. Polym. Environ. 21, 108–114 (2013)

    Article  CAS  Google Scholar 

  21. S. Dhanuskodi, P.A. Angelimary, J. Cryst. Growth 253, 424–428 (2003)

    Article  CAS  Google Scholar 

  22. A.L. Irsai, C. Majdik, R. Silaghi, dumitrescu studia UBB chemia LXII, 495–513 (2017)

    Article  Google Scholar 

  23. B. Schneider, J. Stokr, P. Schmidt, Polym. J. 20, 705–712 (1979)

    Article  CAS  Google Scholar 

  24. S. Stella Mary, S. Shahil Kirupavathy, P. Mythili, P. Srinivasan, T. Kanagasekar, R. Gopalakrishnan, Spectrochim Acta Part A 71, 10–16 (2008)

    Article  Google Scholar 

  25. T. Balakrishnan, G. Bhagavannarayana, K. Ramamurthi, Spectrochim. Acta A 71, 578–583 (2008)

    Article  CAS  Google Scholar 

  26. S. Dhanuskodi, K. Vasantha, Spectrochim. Acta A 61, 1777–1782 (2005)

    Article  CAS  Google Scholar 

  27. N. Goel, N. Sinha, B. Kumar, Mater. Res. Bull. 48, 1632–1636 (2013)

    Article  CAS  Google Scholar 

  28. G. Cassanas, G. Kister, E. Farrrgue, M. Morsw, L. Bardet, Spectrochim. Acta A 49(2), 271–279 (1993)

    Article  Google Scholar 

  29. https://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi

  30. B.R. Lawn, E.R. Fuller, J. Mater. Sci 10, 2016–2024 (1975)

    Article  CAS  Google Scholar 

  31. C.C. Desai, J.L. Raj, Bull. Mater. Sci. 5, 453–459 (1983)

    Article  CAS  Google Scholar 

  32. N. Sivakumar, G. Anbalagan, Opt. Mater. 60, 533–540 (2016)

    Article  CAS  Google Scholar 

  33. N. Kalaimani, K. Ramya, R. Aarthi, C.R. Raja, Chin. J. phys 61, 104 (2019)

    Article  CAS  Google Scholar 

  34. T.H. Wei, D.J. Hagan, M.J. Sence, E.W. Van Stryland, J.W. Perry, D.R. Coulter, Appl. Phys. B 54, 46–51 (1992)

    Article  Google Scholar 

  35. S. Dhanuskodi, T.C. Sabari Girisun, S. Vinitha, Curr. Appl. Phys. 11, 860–864 (2011)

    Article  Google Scholar 

  36. K. Sangwal, Mater. Chem. Phys. 63, 145–149 (2000)

    Article  CAS  Google Scholar 

  37. R. Vijayan, R. Ramesh Babu, R. Gopalakrishnan, P. Ramasamy, W.T.A. Harrison, J. Cryst. Growth 262, 490–498 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Sophisticated Analytical Instruments Facility (SAIF), Indian Institute of Technology (IITM), Chennai for providing single crystal XRD and FT-Raman spectral analysis. Authors gratefully acknowledge the Instrumentation Centre of St. Joseph’s College, Trichy for recording UV–Vis–NIR, FTIR and SASTRA university for providing powder XRD, TGA/DSC, SEM and NMR spectra. Also, the authors place a special thanks to Dr G. Vinitha, VIT, Chennai for providing them with third-order nonlinear testing facility for recording Z-scan measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ramachandra Raja.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gokila, G., Aarthi, R. & Raja, C.R. Elucidation of the properties of Lithium bis(2-methyllactato) borate monohydrate crystal for laser applications. J Mater Sci: Mater Electron 31, 6956–6962 (2020). https://doi.org/10.1007/s10854-020-03259-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03259-0

Navigation