Skip to main content
Log in

Low-temperature reducible particle-free screen-printable silver ink for the fabrication of high conductive electrodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this contribution, screen printing of aqueous based particle-free silver ink is addressed using combustion chemistry, where inks embody a redox mixture of silver nitrate and citric acid in the presence of a binder, sodium-carboxymethylcellulose. The exothermic reaction at ~ 176 °C results in the formation of pure silver. Screen-printing process is optimized for three different silver loadings (14%, 18% and 22%) in ink. In depth rheological study of the inks reveals thixotropic nature and the ink with 18% of silver possessing a viscosity of 328 Pa .s has a recovery rate of 84% at 110 s with a shear rate of 1 s−1. The deposited silver films (~ 3 µm thick) on both rigid-glass and flexible-polyamide substrates have shown an electrical conductivity of 4.2 × 106 S m−1 and 2.6 × 106 S m−1 respectively. Film adhesion on glass substrates categorized under 3B as per ASTM D-3359. Present screen-printed silver films find their application as a gate electrode in thin film transistors (TFTs). The TFTs comprising of indium zinc tin oxide–semiconductor and sodium β -alumina dielectric with screen-printed silver as a gate electrode exhibited the saturation mobility, on:off ratio and threshold voltage of 0.88 cm2 V−1 s−1, 102 and ~ 0.3 V respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F.C. Krebs et al., A complete process for production of flexible large area polymer solar cells entirely using screen printing—first public demonstration. Sol. Energy Mater. Sol. Cells 93(4), 422–441 (2009)

    Article  CAS  Google Scholar 

  2. R. Koncki et al., Disposable strip potentiometric electrodes with solvent-polymeric ion-selective membranes fabricated using screen-printing technology. Anal. Chim. Acta 385(1–3), 451–459 (1999)

    Article  CAS  Google Scholar 

  3. Z. Bao et al., High-performance plastic transistors fabricated by printing techniques. Chem. Mater. 9(6), 1299–1301 (1997)

    Article  CAS  Google Scholar 

  4. S. Bae et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574 (2010)

    Article  CAS  Google Scholar 

  5. G.E. Jabbour, R. Radspinner, N. Peyghambarian, Screen printing for the fabrication of organic light-emitting devices. IEEE J. Sel. Top. Quantum Electron. 7(5), 769–773 (2001)

    Article  CAS  Google Scholar 

  6. X. Ge et al., Screen-printed thin YSZ films used as electrolytes for solid oxide fuel cells. J. Power Sources 159(2), 1048–1050 (2006)

    Article  CAS  Google Scholar 

  7. Y.-T. Yen, T.-H. Fang, Y.-C. Lin, Optimization of screen-printing parameters of SN9000 ink for pinholes using Taguchi method in chip on film packaging. Robot. Comput. Integr. Manuf. 27(3), 531–537 (2011)

    Article  Google Scholar 

  8. R. Rudež, J. Pavlič, S. Bernik, Preparation and influence of highly concentrated screen-printing inks on the development and characteristics of thick-film varistors. J. Eur. Ceram. Soc. 35(11), 3013–3023 (2015)

    Article  CAS  Google Scholar 

  9. H.D. Goldberg et al., Screen printing: a technology for the batch fabrication of integrated chemical-sensor arrays. Sens. Actuators B: Chem. 21(3), 171–183 (1994)

    Article  CAS  Google Scholar 

  10. S. Valsalam et al., Rapid biosynthesis and characterization of silver nanoparticles from the leaf extract of Tropaeolum majus L. and its enhanced in vitro antibacterial, antifungal, antioxidant and anticancer properties. J. Photochem. Photobiol. B: Biol 191, 65–74 (2019)

    Article  CAS  Google Scholar 

  11. J.J. Vijaya et al., Bioreduction potentials of dried root of Zingiber officinale for a simple green synthesis of silver nanoparticles: antibacterial studies. J. Photochem. Photobiol., B 177, 62–68 (2017)

    Article  CAS  Google Scholar 

  12. M.R. Somalu, V. Yufit, N. Brandon, The effect of solids loading on the screen-printing and properties of nickel/scandia-stabilized-zirconia anodes for solid oxide fuel cells. Int. J. Hydrog. Energy 38(22), 9500–9510 (2013)

    Article  CAS  Google Scholar 

  13. M.R. Somalu, N.P. Brandon, Rheological studies of nickel/scandia-stabilized-zirconia screen printing inks for solid oxide fuel cell anode fabrication. J. Am. Ceram. Soc. 95(4), 1220–1228 (2012)

    Article  CAS  Google Scholar 

  14. R. Durairaj, A. Seman, N. Ekere, Development of quality control (QC) tools for solder pastes used for flip chip assembly based on oscillatory tests. In 2006 1st Electronic Systemintegration Technology Conference, IEEE, 2006

  15. M.R. Somalu et al., Understanding the relationship between ink rheology and film properties for screen-printed nickel/scandia-stabilized-zirconia anodes. ECS Trans. 57(1), 1321–1330 (2013)

    Article  CAS  Google Scholar 

  16. J.W. Phair, M. Lundberg, A. Kaiser, Leveling and thixotropic characteristics of concentrated zirconia inks for screen-printing. Rheol. Acta 48(2), 121–133 (2009)

    Article  CAS  Google Scholar 

  17. L. Tang et al., Printable metal-polymer conductors for highly stretchable bio-devices. IScience 4, 302–311 (2018)

    Article  CAS  Google Scholar 

  18. X. Du et al., Nanocellulose-based conductive materials and their emerging applications in energy devices—a review. Nano Energy 35, 299–320 (2017)

    Article  CAS  Google Scholar 

  19. S. Merilampi, T. Laine-Ma, P. Ruuskanen, The characterization of electrically conductive silver ink patterns on flexible substrates. Microelectron. Reliab. 49(7), 782–790 (2009)

    Article  CAS  Google Scholar 

  20. B. Lee et al., A low-cure-temperature copper nano ink for highly conductive printed electrodes. Curr. Appl. Phys. 9(2), e157–e160 (2009)

    Article  Google Scholar 

  21. Y.-L. Tai, Z.-G. Yang, Z.-D. Li, A promising approach to conductive patterns with high efficiency for flexible electronics. Appl. Surf. Sci. 257(16), 7096–7100 (2011)

    Article  CAS  Google Scholar 

  22. K.J. Lee et al., Direct synthesis and inkjetting of silver nanocrystals toward printed electronics. Nanotechnology 17(9), 2424 (2006)

    Article  CAS  Google Scholar 

  23. F.T. Moreira et al., Screen-printed electrode produced by printed-circuit board technology. Application to cancer biomarker detection by means of plastic antibody as sensing material. Sens. Actuators B: Chem. 223, 927–935 (2016)

    Article  CAS  Google Scholar 

  24. X. Cao et al., Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes. ACS Nano 8(12), 12769–12776 (2014)

    Article  CAS  Google Scholar 

  25. J. Liang, K. Tong, Q. Pei, A water-based silver-nanowire screen-print ink for the fabrication of stretchable conductors and wearable thin-film transistors. Adv. Mater. 28(28), 5986–5996 (2016)

    Article  CAS  Google Scholar 

  26. S.C. Lim et al., Organic thin-film transistor using high-resolution screen-printed electrodes. Jpn. J. Appl. Phys. 48(8R), 081503 (2009)

    Article  CAS  Google Scholar 

  27. M. Ito et al., Application of amorphous oxide TFT to electrophoretic display. J. Non-Cryst. Solids 354(19–25), 2777–2782 (2008)

    Article  CAS  Google Scholar 

  28. S.F. Jahn et al., Inkjet printing of conductive silver patterns by using the first aqueous particle-free MOD ink without additional stabilizing ligands. Chem. Mater. 22(10), 3067–3071 (2010)

    Article  CAS  Google Scholar 

  29. J.-J. Chen et al., A particle-free silver precursor ink useful for inkjet printing to fabricate highly conductive patterns. J. Mater. Chem. C 4(44), 10494–10499 (2016)

    Article  CAS  Google Scholar 

  30. A. Kumar, E. Wolf, A. Mukasyan, Solution combustion synthesis of metal nanopowders: nickel—reaction pathways. AIChE J. 57(8), 2207–2214 (2011)

    Article  CAS  Google Scholar 

  31. A. Salian, P. Pujar, S. Mandal, Facile in situ formation of high conductive Ag and CuxOy composite films: a role of aqueous spray combustion. J. Mater. Sci.: Mater. Electron. 30(3), 2888–2897 (2019)

    CAS  Google Scholar 

  32. P. Pujar, D. Gupta, S. Mandal, High-performance low voltage operation of indium zinc tin oxide thin film transistors using chemically derived sodium β-alumina dielectric. J. Mater. Sci.: Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-01238-8

    Article  Google Scholar 

  33. R. Faddoul, N. Reverdy-Bruas, J. Bourel, Silver content effect on rheological and electrical properties of silver pastes. J. Mater. Sci.: Mater. Electron. 23(7), 1415–1426 (2012)

    CAS  Google Scholar 

  34. H.A. Barnes, J.F. Hutton, K. Walters, An Introduction to Rheology (Elsevier, Amsterdam, 1989)

    Google Scholar 

  35. R. Durairaj et al., Rheological characterisation and printing performance of Sn/Ag/Cu solder pastes. Mater. Des. 30(9), 3812–3818 (2009)

    Article  CAS  Google Scholar 

  36. R. Durairaj et al., Rheological characterisation of solder pastes and isotropic conductive adhesives used for flip-chip assembly. J. Mater. Process. Technol. 209(8), 3923–3930 (2009)

    Article  CAS  Google Scholar 

  37. X. Bao et al., Engineering solder paste performance through controlled stress rheology analysis. Solder. Surface Mount Technol. 10(2), 26–35 (1998)

    Article  Google Scholar 

  38. X.G. Li, M.R. Huang, H. Bai, Thermal decomposition of cellulose ethers. J. Appl. Polym. Sci. 73(14), 2927–2936 (1999)

    Article  CAS  Google Scholar 

  39. T. Heinze, K. Pfeiffer, Studies on the synthesis and characterization of carboxymethylcellulose. Die Angewandte Makromolekulare Chemie 266(1), 37–45 (1999)

    Article  CAS  Google Scholar 

  40. M. Rani et al., Biopolymer electrolyte based on derivatives of cellulose from kenaf bast fiber. Polymers 6(9), 2371–2385 (2014)

    Article  CAS  Google Scholar 

  41. M. Trchová, J. Stejskal, The reduction of silver nitrate to metallic silver inside polyaniline nanotubes and on oligoaniline microspheres. Synth. Met. 160(13–14), 1479–1486 (2010)

    Article  CAS  Google Scholar 

  42. W.J. Hyun et al., Screen printing of highly loaded silver inks on plastic substrates using silicon stencils. ACS Appl. Mater. Interfaces. 7(23), 12619–12624 (2015)

    Article  CAS  Google Scholar 

  43. R. Faddoul, N. Reverdy-Bruas, A. Blayo, Formulation and screen printing of water based conductive flake silver pastes onto green ceramic tapes for electronic applications. Mater. Sci. Eng., B 177(13), 1053–1066 (2012)

    Article  CAS  Google Scholar 

  44. K. Park, D. Seo, J. Lee, Conductivity of silver paste prepared from nanoparticles. Colloids Surf. A 313, 351–354 (2008)

    Article  CAS  Google Scholar 

  45. M. Lahti, V. Lantto, Passive RF band-pass filters in an LTCC module made by fine-line thick-film pastes. J. Eur. Ceram. Soc. 21(10–11), 1997–2000 (2001)

    Article  CAS  Google Scholar 

  46. W. Songping, Preparation of micron size flake silver powders for conductive thick films. J. Mater. Sci.: Mater. Electron. 18(4), 447–452 (2007)

    Google Scholar 

  47. W. Yin et al., Screen printing of silver nanoparticle suspension for metal interconnects. Korean J. Chem. Eng. 25(6), 1358–1361 (2008)

    Article  CAS  Google Scholar 

  48. N. Trivedi, N. Ashcroft, Quantum size effects in transport properties of metallic films. Phys. Rev. B 38(17), 12298 (1988)

    Article  CAS  Google Scholar 

  49. D. Gall, Electron mean free path in elemental metals. J. Appl. Phys. 119(8), 085101 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from Science and Engineering Research Board (SERB), Department of Science and Technology, India (ECR/2015/000339) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saumen Mandal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3493 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjunath, G., Pujar, P., Gupta, B. et al. Low-temperature reducible particle-free screen-printable silver ink for the fabrication of high conductive electrodes. J Mater Sci: Mater Electron 30, 18647–18658 (2019). https://doi.org/10.1007/s10854-019-02217-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02217-9

Navigation