Skip to main content
Log in

Influence of Al2O3 nanoparticles incorporation on the dielectric properties of solution processed PVA films for organic field effect transistor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report, the influence of Al2O3 nanoparticles (NP) incorporation on the dielectric properties of solution processed polyvinylalcohol (PVA) films for organic field effect transistor applications. It was observed typical p-type organic field effect transistors. Devices processed using employing PVA films blended with 70 wt% of Al2O3 NP as gate dielectric layers demonstrated higher field effect mobility, better saturation behavior and reduced hysteresis phenomenon compared to the devices based on pure PVA films. Al2O3 NP:PVA blends based dielectric films with 0, 3, 5, 10, 20, 50 and 70 wt% concentrations of Al2O3 NP compared to the weight of PVA were prepared. Dielectric parameters such as dielectric constant and dielectric strength of the Al2O3 NP:PVA films were analyzed. It was found that real dielectric constant as well as dielectric strength of the films increase with increase of Al2O3 NP concentration. Cole–Cole plots of the films demonstrated depressed semi-circles which points non-Debye type behavior. We presume that the devices being investigated with promising results, may be utilized for some industrial applications such as large area sensor arrays in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Muccini, A bright future for organic field-effect transistors. Nat. Mater. 5(8), 605 (2006)

    Article  CAS  Google Scholar 

  2. Y.M. Park et al., Solution-processable zirconium oxide gate dielectrics for flexible organic field effect transistors operated at low voltages. Chem. Mater. 25(13), 2571–2579 (2013)

    Article  CAS  Google Scholar 

  3. H. Ye et al., SiC nanowires synthesized from electrospun nanofiber templates. Adv. Mater. 17(12), 1531–1535 (2005)

    Article  CAS  Google Scholar 

  4. M.-S. Lu et al., Low voltage operation of non-volatile flexible OFET memory devices using high-k P (VDF-TrFE) gate dielectric and polyimide charge storage layer. React. Funct. Polym. 108, 39–46 (2016)

    Article  CAS  Google Scholar 

  5. Z. Liu et al., Binary polymer composite dielectrics for flexible low-voltage organic field-effect transistors. Org. Electron. 53, 205–212 (2018)

    Article  CAS  Google Scholar 

  6. Y. Zhou, S.-T. Han, V. Roy, Nanocomposite dielectric materials for organic flexible electronics. Nanocryst. Mater. (2014). https://doi.org/10.1016/B978-0-12-407796-6.00006-3

    Article  Google Scholar 

  7. X. Xu et al., Organic and hybrid organic-inorganic flexible optoelectronics: recent advances and perspectives. Synth. Met. 256, 116137 (2019)

    Article  CAS  Google Scholar 

  8. Q. Li et al., Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets. Energy Environ. Sci. 8(3), 922–931 (2015)

    Article  CAS  Google Scholar 

  9. A.-L. Deman, J. Tardy, PMMA–Ta2O5 bilayer gate dielectric for low operating voltage organic FETs. Org. Electron. 6(2), 78–84 (2005)

    Article  CAS  Google Scholar 

  10. A. Bahari, M. Shahbazi, Electrical properties of PVP–SiO 2–TMSPM hybrid thin films as OFET gate dielectric. J. Electron. Mater. 45(2), 1201–1209 (2016)

    Article  CAS  Google Scholar 

  11. S. Khound, R. Sarma, Low-voltage organic thin film transistors (OTFTs) using crosslinked polyvinyl alcohol (PVA)/neodymium oxide (Nd2 O3) bilayer gate dielectrics. Appl. Phys. A 124(1), 41 (2018)

    Article  Google Scholar 

  12. M.J. Tadjer et al., Editors’ choice communication—A (001) β-Ga2O3 MOSFET with +2.9 V threshold voltage and HfO2 gate dielectric. ECS J. Solid State Sci. Technol. 5(9), P468–P470 (2016)

    Article  CAS  Google Scholar 

  13. Gao, Z., et al. Thermal stability study of AlGaN/GaN MOS-HEMTs using Gd2 O3 as gate dielectric. in electron devices (CDE), 2015 10th Spanish Conference on. (2015). IEEE

  14. S. Huang et al., O3-sourced atomic layer deposition of high quality Al2O3 gate dielectric for normally-off GaN metal-insulator-semiconductor high-electron-mobility transistors. Appl. Phys. Lett. 106(3), 033507 (2015)

    Article  Google Scholar 

  15. K. Yu et al., Fabrication of high-hole-mobility germanium-on-insulator wafers through an easy method. J. Alloy. Compd. 750, 182–188 (2018)

    Article  CAS  Google Scholar 

  16. X. Huang, P. Jiang, Core–shell structured high-k polymer nanocomposites for energy storage and dielectric applications. Adv. Mater. 27(3), 546–554 (2015)

    Article  CAS  Google Scholar 

  17. Motha, K., et al., Polymer composition comprising a blend of a multimodal polyethylene and a further ethylene polymer suitable for the production of a drip irrigation pipe. (2018), Google Patents

  18. M.S. de Luna, G. Filippone, Effects of nanoparticles on the morphology of immiscible polymer blends–challenges and opportunities. Eur. Polym. J. 79, 198–218 (2016)

    Article  Google Scholar 

  19. T.M. Brenner et al., Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1(1), 15007 (2016)

    Article  CAS  Google Scholar 

  20. L. Mohammed et al., A review on natural fiber reinforced polymer composite and its applications. Int. J. Polym. Sci. (2015). https://doi.org/10.1155/2015/243947

    Article  Google Scholar 

  21. Y.S. Rim et al., Recent progress in materials and devices toward printable and flexible sensors. Adv. Mater. 28(22), 4415–4440 (2016)

    Article  CAS  Google Scholar 

  22. N.Z. Karimi, G. Minak, P. Kianfar, Analysis of damage mechanisms in drilling of composite materials by acoustic emission. Compos. Struct. 131, 107–114 (2015)

    Article  Google Scholar 

  23. Y. Rao, C. Wong, Material characterization of a high-dielectric-constant polymer–ceramic composite for embedded capacitor for RF applications. J. Appl. Polym. Sci. 92(4), 2228–2231 (2004)

    Article  CAS  Google Scholar 

  24. J.M. Whiteley et al., Ultra-thin solid-state Li-ion electrolyte membrane facilitated by a self-healing polymer matrix. Adv. Mater. 27(43), 6922–6927 (2015)

    Article  CAS  Google Scholar 

  25. M.R. Beaulieu et al., Solution processable high dielectric constant nanocomposites based on ZrO2 nanoparticles for flexible organic transistors. ACS Appl. Mater. Interfaces. 5(24), 13096–13103 (2013)

    Article  CAS  Google Scholar 

  26. B. Luo et al., Fabrication, characterization, properties and theoretical analysis of ceramic/PVDF composite flexible films with high dielectric constant and low dielectric loss. J. Mater. Chem. A 2(2), 510–519 (2014)

    Article  CAS  Google Scholar 

  27. B. Luo et al., Synthesis, characterization and dielectric properties of surface functionalized ferroelectric ceramic/epoxy resin composites with high dielectric permittivity. Compos. Sci. Technol. 112, 1–7 (2015)

    Article  CAS  Google Scholar 

  28. B. Hussien, The DC and AC electrical properties of (PMMA-Al2O3) composites. Eur. J. Sci. Res. 52, 236–242 (2011)

    Google Scholar 

  29. S. Han et al., Performance improvement of organic field-effect transistor ammonia gas sensor using ZnO/PMMA hybrid as dielectric layer. Sens. Actuators, B 203, 9–16 (2014)

    Article  CAS  Google Scholar 

  30. J. Li et al., Solution-processable organic and hybrid gate dielectrics for printed electronics. Mater. Sci. Eng., R 127, 1–36 (2018)

    Article  CAS  Google Scholar 

  31. S. Mallakpour, M. Dinari, Enhancement in thermal properties of poly (vinyl alcohol) nanocomposites reinforced with Al2O3 nanoparticles. J. Reinf. Plast. Compos. 32(4), 217–224 (2013)

    Article  Google Scholar 

  32. S.-C. Chang, Y.-J. Hsiao, T.-S. Li, Selecting annealing temperature of P3HT/PCBM incorporated with nano-diamonds using thermal desorption spectroscopy. Int. J. Electrochem. Sci. 10, 1658–1668 (2015)

    Google Scholar 

  33. P. Ortiz-Serna et al., Dielectric spectroscopy of natural rubber-cellulose II nanocomposites. J. Non-Cryst. Solids 357(2), 598–604 (2011)

    Article  CAS  Google Scholar 

  34. A.S. Roy et al., Dielectric properties of novel PVA/ZnO hybrid nanocomposite films. Compos. B 47, 314–319 (2013)

    Article  CAS  Google Scholar 

  35. R. Hill, L. Dissado, Debye and non-debye relaxation. J. Phys. C 18(19), 3829 (1985)

    Article  CAS  Google Scholar 

  36. C. Rost-Bietsch, Ambipolar and light-emitting organic field-effect transistors (Cuvillier Verlag, Gottingen, 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Betül Canimkurbey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canimkurbey, B., Çakirlar, Ç., Piravadili Mucur, S. et al. Influence of Al2O3 nanoparticles incorporation on the dielectric properties of solution processed PVA films for organic field effect transistor applications. J Mater Sci: Mater Electron 30, 18384–18390 (2019). https://doi.org/10.1007/s10854-019-02192-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02192-1

Navigation