Skip to main content
Log in

Effects of changes on temperature and fluorine concentration in the structural, optical and electrical properties of SnO2:F thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Thin films of SnO2:F (FTO) were deposited on glass substrates using the spray pyrolysis technique. Tin dichloride (SnCl2·2H2O) was used as a precursor in the starting solution. The first group of samples was prepared adding ammonium fluoride (NH4F) to the previous mixture in different amounts with respect to tin weight concentration (F/Sn = 0.05, 0.10, 0.15 and 0.20) and deposited at 475 °C. The second group of films was deposited at different temperatures, from T = 475 to 550 °C with a step of ΔT = 25 °C and F/Sn = 0.15 wt. The fluorine and deposition temperature dependencies cause notable changes in the FTO system. The effects on the structure (phase, crystallite size, and microstrain) were investigated using X-ray diffraction associated with Rietveld refinement. The optical properties were studied using the UV–Visible spectrum, and it was fit using the Drude–Lorentz classical dispersion model. The electrical measurements were obtained by four-point Van der Pauw technique. Also, electrical parameters calculated through the Drude contribution, such as resistivity and mobility, were compared with those found in Hall–effect measurements. The FTO with the best figure of merit was integrated as a transparent electrode in a dye-sensitized solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F. Atay, M. Demir, S. Kose, V. Bilgin, I. Akyuz, Some physical properties of ultrasonically sprayed tin oxide films: the effect of the substrate temperature. J. Optoelectron. Adv. Mater. 9(7), 2217–2226 (2007)

    Google Scholar 

  2. A.A. Yadav, E.U. Masumdar, A.V. Moholkar, M. Neuman-Spallart, K.Y. Rajpure, C.H. Bhosale, Electrical, structural and optical properties of SnO2:F thin films: effect of the substrate temperature. J. Alloy. Compd. 488, 350–355 (2009)

    Article  Google Scholar 

  3. S.A. Yousif, J.M. Abass, Structural, morphological and optical characterization of SnO2:F thin films prepared by chemical spray pyrolysis. Int. Lett. Chem. Phys. Astron. 18, 90–102 (2013)

    Article  Google Scholar 

  4. D.S. Lee, Y.T. Kim, J.S. Huh, D.D. Lee, Fabrication and characteristics of SnO2 gas sensor array for volatile organic compounds recognition. Thin Solid Films 416, 271–278 (2002)

    Article  Google Scholar 

  5. E. Elengovan, K. Ramamurthi, Optoelectronic properties of spray deposited SnO2:F thin films for windows materials in solar cells. J. Optoelectron. Adv. Mater. 5(1), 45–54 (2003)

    Google Scholar 

  6. C.C. Lin, M.C. Chiang, Y.W. Chen, Temperature dependence of Fluorine-doped tin oxide films produced by ultrasonic spray pyrolysis. Thin Solid Films 518, 1241–1244 (2009)

    Article  Google Scholar 

  7. A. Annica, J. Nicklas, B. Per, Y. Nu, L. Donald, W.R. Salaneck, Fluorine tin oxide as an alternative to indium tin oxide in polymer LEDs. Adv. Mater. 10, 859–863 (1998)

    Article  Google Scholar 

  8. M.J. Alam, D.D. Cameron, Characterization of transparent conductive ITO thin films deposited on titanium dioxide film by a sol–gel process. Surf. Coat. Technol. 142, 776–780 (2001)

    Article  Google Scholar 

  9. D.B. Fraser, H.D. Cook, Highly conductive transparent films of sputtered In2−xSnxO3−y. J. Electrochem. Soc. 119, 1368 (1972)

    Article  Google Scholar 

  10. T.M. Racheva, G.W. Cnitchlow, SnO2 thin films prepared by the sol–gel process. Thin Solid Films 292, 299–302 (1997)

    Article  Google Scholar 

  11. A.A. Yadav, E.U. Masumdar, A.V. Moholkar, K.Y. Rajpure, C.H. Bhosale, Effect of quantity of spraying solution on the properties of spray deposited fluorine doped tin oxide thin films. Physica B 404, 1874–1877 (2009)

    Article  Google Scholar 

  12. M. Ait Aouaj, R. Diaz, A. Belayachi, F. Rueda, M. AbD–Lefdil, Comparative study of ITO and FTO thin films grown by spray pyrolysis. Mater. Res. Bull. 44, 1458–1461 (2009)

    Article  Google Scholar 

  13. A. Agashe, S. Mahamuni, Competitive effects of film thickness and growth rate in spray pyrolytically deposited fluorine-doped tin dioxide films. Thin Solid Films 518, 4868–4873 (2010)

    Article  Google Scholar 

  14. A.V. Moholkar, S.M. Pawar, K.Y. Rajpure, C.H. Bhosale, Effect of concentration of SnCl4 on sprayed fluorine doped tin oxide thin films. J. Alloy. Compd. 455, 440–446 (2008)

    Article  Google Scholar 

  15. C.M. Wang, C.C. Huang, J.C. Kuo, J.L. Huang, Investigation of pulsed ultraviolet laser annealing of Sb/SnO2 thin films on the structural, optical and electrical properties. Surf. Coat. Technol. 231, 374–379 (2013)

    Article  Google Scholar 

  16. G. Korotcenkov, I. Boris, V. Brinzari, S.H. Han, B.K. Cho, The role of doping effect on the response of SnO2-based thin film gas sensors: analysis based on the results obtained for Co-doped SnO2 films deposited by spray pyrolysis. Sens. Actuator B 182, 112–124 (2013)

    Article  Google Scholar 

  17. G. Turgut, E.F. Keskenler, S. Aydın, E. Sönmez, S. Dogan, B. Düzgün, M. Ertugrul, Effect of Nb doping on structural, electrical and optical properties of spray deposited SnO2 thin films. Superlattices Microstruct. 56, 107–116 (2013)

    Article  Google Scholar 

  18. B. Zhang, Y. Tian, J.X. Zhan, W. Cai, The studies on the role of fluorine in SnO2:F films prepared by spray pyrolysis with SnCl4. J. Optoelectron. Adv. Mater. 13(1), 89–93 (2011)

    Google Scholar 

  19. S. Geetha, R. Rup, A. Mansingh, Band-gap narrowing and band structure in degenerate tin oxide (SnO2) films. J. Phys. Rev. 44, 5672–5680 (1991)

    Article  Google Scholar 

  20. D. Debajyoti, B. Ratnabali, Properties of tin oxide films prepared by reactive electron beam evaporation. Thin Solid Films 149, 291–301 (1987)

    Article  Google Scholar 

  21. S.C. Ray, M.K. Karanjai, D. DasGupta, Tin dioxide based transparent semiconducting films deposited by the dip-coating technique. Surf. Coat. Technol. 102, 73–80 (1998)

    Article  Google Scholar 

  22. K. Omura, P. Veluchamy, M. Tsuji, T. Nishio, M. Murozono, A pyrosol technique to deposit highly transparent, low-resistance SnO2:F thin films from dimethyltin dichloride. J. Electrochem. Soc. 146, 2113 (1999)

    Article  Google Scholar 

  23. G. Frenzer, W.F. Maie, Amorphous porous mixed oxides: sol–gel ways to a highly versatile class of materials and catalysts. Annu. Mater. Res. 36, 281–331 (2006)

    Article  Google Scholar 

  24. T. Chanchana, Y. Visittapong, C. Boothroyd, Microstructural investigation and SnO nanodefects in spray-pyrolyzed SnO2 thin films. Mater. Lett. 65, 2610–2613 (2011)

    Article  Google Scholar 

  25. A.B. Kuzmenko, Guide to ReFit. http://optics.unige.ch/alexey/reffit.html. Accessed 7 Jan 2016. (2004)

  26. Q.P. Tran, J.S. Fang, T.S. Chin, Properties of fluorine-doped SnO2 thin films by a green sol–gel method. Mater. Sci. Semicond. Process. 40, 664–669 (2015)

    Article  Google Scholar 

  27. E. Ching-Prado, A. Watson, H. Miranda, Optical and electrical properties of fluorine doped tin oxide thin film. J. Mater. Sci. 29(18), 15299–15306 (2018)

    Google Scholar 

  28. D. Miao, Q. Zhao, S. Wu, Z. Wang, X. Zhang, X. Zhao, Effect of substrate temperature on the crystal growth orientation of SnO2:F thin films spray-deposited on glass. J. Non-Cryst. Solids 356, 2557–2561 (2010)

    Article  Google Scholar 

  29. A. Tucic, Z.V. Marinkovic, L. Mancic, M. Cilense, O. Miloševic, Pyrosol preparation and structural characterization of SnO2 thin films. J. Mater. Process. Technol. 143, 41–45 (2003)

    Article  Google Scholar 

  30. A. Mohammadi Gheidari, E. Asl Soleimani, M. Mansorhoseini, S. Mohajerzadeh, N. Madani, W. Shams-Kolahi, Structural properties of indium tin oxide thin films prepared for application in solar cells. Mater. Res. Bull. 40, 1303–1307 (2005)

    Article  Google Scholar 

  31. G.J. Exarhos, X.D. Zhou, Discovery-based design of transparent conducting oxide films. Thin Solid Films 515, 7025–7052 (2007)

    Article  Google Scholar 

  32. J. Rodríguez-Carbajal, An introduction to the program Fullprof 2000. https://www.ill.eu/sites/fullprof/index.html (2001)

  33. C.O. Paiva-Santos, A.A. Cavalheiro, M.A. Zaghete, M. Cilense, J.A. Varela, M.T. Silva, Y.P. Mascarenhas, Centre for diffraction data. Adv. X-ray Anal. 44, 38 (2001)

    Google Scholar 

  34. R.A. Young, P. Desai, Arch. Nauki Mater. 10, 71–90 (1989)

    Google Scholar 

  35. K. Vikash, K. Swati, K. Pawan, K. Manoranjan, K. Lawrence, Structural analysis by Rietveld method and its correlation with optical propertis of nanocrystalline zinc oxide. Adv. Mater. Lett. 6, 139–147 (2015)

    Article  Google Scholar 

  36. A.P. Maciel, P.N. Lisboa-Filho, E.R. Leite, C.O. Paiva-Santos, W.H. Schreiner, Y. Maniette, E. Longo, Microstructural and morphological analysis of pure and Ce-doped tin dioxide nanoparticles. J. Eur. Ceram. Soc. 23, 707–713 (2003)

    Article  Google Scholar 

  37. E. Ching Prado, C.A. Samudio, J. Santiago Aviles, V. Subramaniam, Electronic structure and optical properties of SnO2:F from PBE0 hybrid functional calculations. Mater. Sci. 29, 15423–15435 (2018)

    Google Scholar 

  38. F. El Akkad, T. Paulose, Optical transitions and point defects in F:SnO2 films: Effect of annealing. Appl. Surf. Sci. 295, 8–17 (2014)

    Article  Google Scholar 

  39. F. El Akkad, S. Joseph, Physicochemical characterization of point defects in fluorine doped tin oxide films. J. Appl. Phys. 112, 023501 (2012)

    Article  Google Scholar 

  40. A.I. Martinez, D.R. Acosta, Effect of the fluorine content on the structural and electrical properties of SnO2 and ZnO–SnO2 thin films prepared by spray pyrolysis. Thin Solid Films 483, 107–113 (2005)

    Article  Google Scholar 

  41. B.I. Zhu, W. Zhao, W.C. Hu, T.T. Li, J. Wu, Z.H. Gan, J. Liu, D.W. Zeng, C.S. Xie, Structural, electrical, and optical properties of F-doped SnO or SnO2 films prepared by RF magnetron sputtering at different substrate temperatures and O2 fluxes. J. Alloy Compd. 719, 429–437 (2017)

    Article  Google Scholar 

  42. E. Elangovan, K. Ramamurthi, A study on low cost-high conducting fluorine and antimony-doped tin oxide thin films. Appl. Surf. Sci. 249, 183 (2005)

    Article  Google Scholar 

  43. D.C. Canestrado, M.M. Oliveira, R. Velaski, M. da Silva, G.F.D. David, F.A. da Silva, L. Roman, C. Persson, Strong inter-conduction-band absorption in heavily fluorine doped tin oxide. Appl. Surf. Sci. 255, 1874–1879 (2008)

    Article  Google Scholar 

  44. J. Yang, W. Liu, L. Dong, Y. Li, C. Li, H. Zhao, Studies on the structural and electrical properties of F-doped SnO2 film prepared by APCVD. Appl. Surf. Sci. 257, 10499–10502 (2011)

    Google Scholar 

  45. S. Igor, On the thermal expansion of composite materials and cross-property connection between thermal expansion and thermal conductivity. Mech. Mater. 45, 20–33 (2011)

    Google Scholar 

  46. M. Fantini, T. Torriani, The compositional and structural properties of sprayed SnO2:F thin films. Thin Solid Films 138, 255 (1986)

    Article  Google Scholar 

  47. D.R. Acosta, E.P. Zironi, E. Montoya, W. Estrada, About the structural, optical and electrical properties of SnO2 films produced by spray pyrolysis from solutions with low and high contents of fluorine. Thin Solid Films 288, 1–7 (1996)

    Article  Google Scholar 

  48. N. Haddad, Z. Ben Ayadi, H. Mahdhi, K. Djessas, Influence of fluorine doping on the microstructure, optical and electrical properties of SnO2 nanoparticles. J. Mater. Sci. 28, 15457–15465 (2017)

    Google Scholar 

  49. K. Deva Arun Kumar, S. Valanarasu, K. Jeyadheepan, K. Hyun-Seok, D. Vikraman, Evaluation of the physical, optical, and electrical properties of SnO2:F thin films prepared by nebulized spray pyrolysis for optoelectronics. J. Mater. Sci. 29, 3648–3656 (2018)

    Google Scholar 

  50. J.C. Manifacier, J. Gasiot, J. Fillard, A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film. J. Phys. E 9, 1002 (1976)

    Article  Google Scholar 

  51. R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon. J. Phys. E 16, 1214 (1986)

    Article  Google Scholar 

  52. S. Chaisitsak, Nanocrystalline SnO2:F thin films for liquid petroleum gas sensors. Sensors 11, 7127–7140 (2011)

    Article  Google Scholar 

  53. M. Kadi, A. Smaali, R. Outemzabet, Analysis of optical and related properties of tin oxide thin films determined by Drude–Lorentz model. Surf. Coat. Technol. 211, 45 (2012)

    Article  Google Scholar 

  54. A.R. Babar, S.S. Shinde, A.V. Moholkar, C.H. Bhosale, K.Y. Rajpure, Structural and optoelectronic properties of sprayed Sb:SnO2 thin films: effects of substrate temperature and nozzle-to-substrate distance. J. Semicond. 32, 102001-1 (2011)

    Google Scholar 

  55. X. Wang, X. Wang, Q. Di, H. Zhao, B. Liang, J. Yang, Mutual effects of fluorine dopant and oxygen vacancies on structural and luminescence characteristics of F doped SnO2 nanoparticles. Materials 10, 1398 (2017)

    Article  Google Scholar 

  56. A. Miglio, R. Saniz, D. Waroquiers, M. Stankovski, M. Giantomassi, G. Hautier, G.M. Rignanese, Computed electronic and optical properties of SnO2 under compressive stress. Opt. Mater. 28, 161–166 (2017)

    Google Scholar 

  57. A.E. Hassanien, H. Hashem, G. Kamel, S. Soltan, A.M. Moustafa, M. Hammam, A.A. Ramadan, Performance of transparent conducting fluorine-doped tin oxide films for applications in energy efficient devices. Int. J. Thin. Fil. Sci. Tec 1, 55–65 (2016)

    Google Scholar 

  58. B. Thangaraju, Thin Solid Films 402, 71 (2002)

    Article  Google Scholar 

  59. H. Kim, R.C. Auyeung, A. Pique, Thin Solid Films 516, 5052 (2008)

    Article  Google Scholar 

  60. E. Elangovan, K. Ramesh, K. Ramamurthi, Studies on the structural and electrical properties of spray deposited SnO2: Sb thin films as a function of substrate. Solid State Commun. 130, 523–527 (2003)

    Article  Google Scholar 

  61. E. Elangovan, K. Ramamurthi, Studies on micro-structural and electrical properties of spray-depositedfluorine-doped tin oxide thin films from low-cost precursor. Thin Solid Films 476, 231–236 (2005)

    Article  Google Scholar 

  62. G. Haacke, Transparent conducting coatings. Annu. Rev. Mater. Sci. 7, 73–93 (1977)

    Article  Google Scholar 

  63. K. Zhang, F. Zhu, C. Huan, A. Wee, Indium tin oxide films prepared by radio frequency magnetron sputtering method at a low processing temperature. Thin Solid Films 376, 255–263 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Col-11-014 SENACyT Grant, Panama. In addition, thanks to the National Research System of Panama (SNI) for supporting the first author and the corresponding author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ching-Prado.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda, H., Velumani, S., Pérez, C.A.S. et al. Effects of changes on temperature and fluorine concentration in the structural, optical and electrical properties of SnO2:F thin films. J Mater Sci: Mater Electron 30, 15563–15581 (2019). https://doi.org/10.1007/s10854-019-01933-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01933-6

Navigation