Skip to main content
Log in

Tunable dielectric and microstructure properties Zn2SiO4–Mn glass–ceramics for multifunctional applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The synthesis of Zn2SiO4 doped with Mn2+ ions (MnZnSi) glass–ceramics‎ sample have been successfully by a sol–gel method. The crystal structure and microstructure of Mn–Zn–Si glass–ceramics were studied by X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. The XRD results of Mn–Zn–Si glass–ceramics samples showed no obvious differences from the willemite structure. The TEM results showed the Mn–Zn–Si glass–ceramics are nanometer sized grains. The dielectric properties of the glass–ceramics samples were measured with frequency at diverse measurement temperature‎. The loss tangent (tan δ) and AC conductivity (σac) properties as the function of frequency have also been analyzed, which meet the requirements of high power and impedance matching, thus making it a promising candidate for applications as electrically tunable microwave devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Omri, O.M. Lemine, L. El Mir, Ceram. Int. 43, 6585–6591 (2017)

    Article  Google Scholar 

  2. D.J. Robbins, N.S. Casewell, Ph Avouris, E.A. Giess, I.F. Chang, D.B. Dove, J. Electrochem. Soc. 132, 2784–2793 (1985)

    Article  Google Scholar 

  3. Q. Lu, P. Wang, J. Li, Mater. Res. Bull. 46, 791–795 (2011)

    Article  Google Scholar 

  4. M. Hafeez, A. Ali, S. Manzoor, A.S. Bhatti, Nanoscale. 6, 14845–14855 (2014)

    Article  Google Scholar 

  5. G. Dou, D. Zhou, M. Guo, S. Gong, J. Alloys Compd. 513, 466–473 (2012)

    Article  Google Scholar 

  6. X. Duan, D. Yuan, X. Cheng, X. Wang, Opt. Mater. 28, 1152–1155 (2006)

    Article  Google Scholar 

  7. L. Roberston, M. Duttine, M. Gaudon, A. Demourgues, Chem. Mater. 33, 2419–2427 (2011)

    Google Scholar 

  8. S.F. Wang, F. Gu, M.K. Lu, W.G. Zou, S.W. Liu, G.J. Zhou, D. Xu, D.R. Yuan, Opt. Mater. 27, 269–272 (2004)

    Article  Google Scholar 

  9. H. Shigemura, M. Shojiya, R. Kanno, Y. Kawamoto, J. Phys. Chem. B 102, 1920–1925 (1998)

    Article  Google Scholar 

  10. S.R. Lukic, D.M. Petrovic, L.J. Dacanin, M. Marinovic-Cincovic, Z. Aantic, R. Karsmanivic, M.D. Dramicanin, J. Optoelectron, Adv. Mater. 10, 2748–2752 (2008)

    Google Scholar 

  11. L. Roberston, M. Duttine, M. Gaudon, A. Demourgues, Chem. Mater. 23, 2419–2427 (2011)

    Article  Google Scholar 

  12. R. Ye, G. Jia, D. Deng, Y. Hua, Z. Cui, S. Zhao, L. Huang, H. Wang, C. Li, S. Xu, J. Phys. Chem. C 115, 10851–10858 (2011)

    Article  Google Scholar 

  13. M. Takesue, A. Suino, Y. Hakuta, H. Hayashi, R.L. Smith, J. Solid State Chem. 181, 1307–1313 (2008)

    Article  Google Scholar 

  14. R.P.S. Chakradhar, B.M. Nagabhushana, G.T. Chandrappa, K.P. Ramesh, J.L. Rao, J. Chem. Phys. 121, 10250–10259 (2004)

    Article  Google Scholar 

  15. V. Bondar, Mater. Sci. Eng. B 69–70 (2000) 510–513

  16. B. Chandra Babu, S. Buddhudu, Phys. Procedia. 49, 128–136 (2013)

    Article  Google Scholar 

  17. S. Lee, B. Jeon, T. Kang, W. Lee, A.M. Malik, S. Park, J. Lim, B. Park, Y. Jeong, J. Kim, J. Lumin. 196, 290–293 (2018)

    Article  Google Scholar 

  18. T.S. Ahmadi, M. Haase, H. Weller, Mater. Res. Bull. 35, 1869–1879 (2000)

    Article  Google Scholar 

  19. C.J. Kim, M.S. Kwon, J. Mater. Sci. 41, 6138–6141 (2006)

    Article  Google Scholar 

  20. C.H. Lee, Y.C. Kang, K.Y. Jung, J.G. Choi, Mater. Sci. Eng. B 117, 210–215 (2005)

    Article  Google Scholar 

  21. H. Wang, Y. Ma, G. Yi, D. Chen, Mater. Chem. Phys. 82, 414–418 (2003)

    Article  Google Scholar 

  22. K. Su, T.D. Tilley, M.J. Sailor, J. Am. Chem. Soc. 118, 3459–3468 (1996)

    Article  Google Scholar 

  23. X.-H. Wang, Z.-L. Gui, L.-T. Li, Mater. Chem. Phys. 55, I93–I96 (1998)

    Article  Google Scholar 

  24. K. Tang, Q. Wu, X. Xiang, J. Mater. Sci.: Mater. Electron. 23, 1099–1102 (2012)

    Google Scholar 

  25. W. Hu, H. Liu, H. Hao, Z. Yao, M. Cao, Z. Wang, Z. Song, J. Mater. Sci.: Mater. Electron. 25, 4730–4734 (2014)

    Google Scholar 

  26. T.S. Sasikala, C. Pavithran, M.T. Sebastian, J. Mater. Sci.: Mater. Electron. 21, 141–144 (2010)

    Google Scholar 

  27. L. El Mir, K. Omri, J. Lumin. 203, 336–340 (2018)

    Article  Google Scholar 

  28. K. Omri, A. Bettaibi, K. Khirouni, L.El Mir, Physica B 537, 167–175 (2018)

    Article  Google Scholar 

  29. R. Selomulya, S. Ski, K. Pita, C.H. Kam, Q.Y. Zhang, S. Buddhudu, Mater. Sci. Eng. B 100, 136 (2003)

    Article  Google Scholar 

  30. N. Taghavinia, G. Lerondela, H. Makino, A. Yamamoto, T. Yao, Y. Kawazoe, T. Goto, J. Nanotechnol. 12, 547 (2001)

    Article  Google Scholar 

  31. M. Goswami, R. Ghosh, A.K. Meikap, Polyaniline Blends, Composites and Nanocomposites (Elsevier, Amsterdam, 2018), pp. 305–325

    Book  Google Scholar 

  32. V. Bondar, Mater. Sci. Eng. B 70, 510–513 (2000)

    Article  Google Scholar 

  33. T. Selvalakshmi, S. Sellaiyan, A. Uedono, A.C. Bose, Mater. Chem. Phys. 166, 73–81 (2015)

    Article  Google Scholar 

  34. X. Lu, W. Bian, C. Min, Z. Fu, Q. Zhang, H. Zhu. Ceram. Int. 44, 10028–10034 (2018)

    Article  Google Scholar 

  35. X. Lu, W. Bian, Y. Li, H. Zhu, Z. Fu, Q. Zhang, J. Am. Ceram. Soc. 101, 1646–1654 (2018)

    Article  Google Scholar 

  36. S.K. Deshpande, V.K. Shrkhande, M.S. Jogad, P.S. Goyal, G.P. Kothiyal, Bull. Mater. Sci. 30, 497–502 (2007)

    Article  Google Scholar 

  37. D. Johnnson, ZView: a software program for IES analysis. Version 2.8. (Scriber Assocates, Inc, Southern Pines, 2008)

    Google Scholar 

  38. M.J. Esplandiu, E.M. Patrito, V.A. Macagno,  Electrochim. Acta, 40, 809 (1995).

    Article  Google Scholar 

  39. I.-B. Shim, K.-T. Park, C.-S. Kim, Y.-J. Oh, J. Magn. Magn. Mater. 226–230, 733–735 (2001)

    Article  Google Scholar 

  40. V. Purohit, R. Padhee, R.N.P. Choudhary, Ceram. Int. 44, 3993–3999 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Omri.

Ethics declarations

Conflict of interest

We affirm that no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omri, K., Lahouli, R. Tunable dielectric and microstructure properties Zn2SiO4–Mn glass–ceramics for multifunctional applications. J Mater Sci: Mater Electron 30, 7834–7839 (2019). https://doi.org/10.1007/s10854-019-01102-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01102-9

Navigation