Skip to main content

Advertisement

Log in

Synthesis and characterization of nickel antimonate nanoparticles: sensing properties in propane and carbon monoxide

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nickel antimonate (NiSb2O6) was synthesized by a microwave-assisted wet chemical method for its application as a potential gas sensor. The powders calcined at 600 °C were corroborated by X-ray diffraction. The microstructure of the material was analyzed by electron microscopy in its scanning and transmission versions, finding different morphologies. The average size of the nanoparticles was estimated at ~ 14.3 nm. X-ray photoelectron spectroscopy showed that the bond energies for Ni (2p) were of 855.2 and 872.9 eV, for Sb, they were of 530.28 and 539.66 eV, and for O(1s), it overlapped the Sb at 530.28 eV. Photoluminescence and UV–Vis spectroscopy measurements confirmed that the emission energy values were of 2.8 and 1.4 eV. Tests carried out in propane and CO atmospheres indicated that the NiSb2O6 nanoparticles possess good response at several concentrations and temperatures of both gases. According to our results, NiSb2O6 is a strong candidate to be applied as a gas sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Savolainen, H. Aleniusa, H. Norppaa, L. Pylkkänena, T. Tuomi, G. Kasper, Toxicology 269, 92–104 (2010)

    Article  Google Scholar 

  2. V.N.T. Satyanarayana, A.S. Kuchibhatla, D. Karakoti, S. Bera, Seal, Prog. Mater. Sci. 52, 699–913 (2007)

    Article  Google Scholar 

  3. C.N.R. Rao, A.K. Cheetham, J. Mater. Chem. 11, 2887–2894 (2001)

    Article  Google Scholar 

  4. H.K. Chitte, N.V. Bhat, N.S. Karmakar, D.C. Kothari, G.N. Shinde, J. Nano Sci. Eng. 2, 19–24 (2012)

    Article  Google Scholar 

  5. C. Wu, P. Yin, X. Zhu, C.O. Yang, Y. Xie, J. Phys. Chem. B 110, 17806–17812 (2006)

    Article  Google Scholar 

  6. Z.-H. Liang, Y.-J. Zhu, G.-F. Cheng, Y.-H. Huang, Can. J. Chem. 84, 1050–1053 (2006)

    Article  Google Scholar 

  7. N. Yamazoe, K. Shimanoe, J. Sens. 2009, 1–21 (2009)

    Article  Google Scholar 

  8. H. Gómez-Pozos, K.T. Venkata Krishna, M. de la L. Olvera-Amador, Y. Kudriavtsev, A. Maldonado-Alvarez, J. Mater. Sci. Mater. Electron. 29, 15829–15837 (2018)

    Article  Google Scholar 

  9. K. Mikami, Y. Kido, Y. Akaishi, A. Quitain, T. Kida, Sensors 19, 1–14 (2019)

    Article  Google Scholar 

  10. A. Guillén-Bonilla, V.M. Rodríguez-Betancourtt, H. Guillén-Bonilla, L. Gildo-Ortiz, O. Blanco-Alonso, N.E. Franco-Rodríguez, J. Reyes-Gómez, A. Casillas-Zamora, J.T. Guillen-Bonilla, J. Mater. Sci. Mater. Electron. 29, 15741–15753 (2018)

    Article  Google Scholar 

  11. L. Gildo-Ortiz, H. Guillén-Bonilla, V.M. Rodríguez-Betancourtt, O. Blanco-Alonso, A. Guillén-Bonilla, J. Santoyo-Salazar, I.C. Romero-Ibarra, J. Reyes-Gómez, Ceram. Int. 44, 15402–15410 (2018)

    Article  Google Scholar 

  12. T. Lin, X. Lv, Z. Hu, A. Xu, C. Feng, Sensors 19, 1–32 (2019)

    Article  Google Scholar 

  13. R.H.J. Hannink, A.J. Hill, Nanostructure Control of Materials, 1st edn. (Woodhead Publishing, Cambridge, 2006)

    Book  Google Scholar 

  14. O. Vasylkiv, Y. Sakka, Nano Lett. 5, 2598–2604 (2015)

    Article  Google Scholar 

  15. M. Montero, T. Molina, M. Szafran, R. Moreno, M.I. Nieto, Ceram. Int. 38, 2779–2784 (2012)

    Article  Google Scholar 

  16. J. Zhang, Q. Xu, H. Tanaka, M. Iwasa, J. Am. Ceram. Soc. 89, 1440–1442 (2006)

    Article  Google Scholar 

  17. S.-J. Lee, W.M. Kriven, J. Am. Ceram. Soc. 81, 2605–2612 (1998)

    Article  Google Scholar 

  18. E. Matijevic, Langmuir 10, 8–16 (1994)

    Article  Google Scholar 

  19. E. Matijevic, Chem. Mater. 5, 412–426 (1993)

    Article  Google Scholar 

  20. A. Chittofrati, E. Matijevic, Colloid Surf. 48, 65–78 (1990)

    Article  Google Scholar 

  21. H. Guillén-Bonilla, M. Flores-Martínez, V.M. Rodríguez-Betancourtt, A. Guillén-, J. Bonilla, L. Reyes-Gómez, M.L. Gildo-Ortiz, Olvera-Amador, J. Santoyo-Salazar, Sensors 16, 177 (2016)

    Article  Google Scholar 

  22. H. Guillén-Bonilla, L. Gildo-Ortiz, M.-L. Olvera, J. Santoyo-Salazar, V.M. Rodríguez-Betancourtt, A. Guillen-Bonilla, J. Reyes-Gómez, J. Nanomater., 1–9 (2015)

  23. V.V. Gorbunov, A.A. Shidlovskii, L.F. Shmagin, Combust. Explos. Shock Waves. 19, 172–173 (1983)

    Article  Google Scholar 

  24. L. Gildo-Ortiz, H. Guillén-Bonilla, J. Santoyo-Salazar, M.L. Olvera, T.V.K. Karthik, E. Campos-González, J. Reyes-Gómez, J. Nanomater. 2014, 8 (2014)

  25. A. Guillén-Bonilla, V.M. Rodríguez-Bentacourtt, M. Flores-Martínez, O. Blanco-Alonso, J. Reyes-Gómez, L. Gildo-Ortiz, H. Guillén-Bonilla, Sensors. 14, 15802–15814 (2014)

    Article  Google Scholar 

  26. E.J. Kinast, L.I. Zawislak, J.B.M. da Cunha, V. Antonietti, M.A.Z. de Vasconcellos, C.A. dos Santos, J. Solid State Chem. 163, 218–223 (2002)

    Article  Google Scholar 

  27. N. Berand, K.-J. Range, J. Alloy. Compd. 205, L3–L5 (1994)

    Article  Google Scholar 

  28. H.T. Wua, Y.S. Jiang, Y.L. Yue, Ceram. Int. 38, 5151–5156 (2012)

    Article  Google Scholar 

  29. A.M. Nakua, J.E. Greedan, J. Crystal Growth. 154, 334–338 (1995)

    Article  Google Scholar 

  30. J.N. Reimers, J.E. Greedan, M.A. Subramanian, J. Solid State Chem. 79, 263–276 (1989)

    Article  Google Scholar 

  31. D. Reinen, M. Atanasov, S.-L. Lee, Coord. Chem. Rev. 175, 91–158 (1998)

    Article  Google Scholar 

  32. D. Larcher, A.S. Prakash, L. Laffont, M. Womes, J.C. Jumas, J. Olivier-Fourcade, M.S. Hedge, J.M. Tarascon, J. Electrochem. Soc. 153, A1778–A1787 (2006)

    Article  Google Scholar 

  33. V.-M. Rodríguez-Betancourtt, H. Guillén-Bonilla, M. Flores-Martínez, A. Guillén-Bonilla, J.P. Moran-Lazaro, J.T. Guillen-Bonilla, M.A. González, M. de la L. Olvera-Amador, J. Nanomater. 2017, 9 (2017)

  34. M.N. Ahmed, S.M. Yamany, N. Mohamed, A.A. Farag, T. Moriarty, IEEE Trans. Med. Imaging 21, 193–199 (2002)

    Article  Google Scholar 

  35. K.A. Hing, S.M. Best, W. Bonfield, J. Mater Sci. 10, 135–145 (1999)

    Google Scholar 

  36. H. Haeuseler, Spectrochim. Acta Part A Mol. Spectrosc. 37, 487–495 (1981)

    Article  Google Scholar 

  37. E. Husson, Y. Repelin, H. Brusset, A. Cerez, Spectrochim. Acta Part A Mol. Spectrosc. 35, 1177–1187 (1979)

    Article  Google Scholar 

  38. M. Weil, R. Mathieu, P. Nordblad, S.A. Ivanov, Cryst. Res. Technol. 2–3, 142–151 (2014)

    Article  Google Scholar 

  39. O.A. Fouad, A.M. Hassan, H.A. El-Wahab, A.M. Eldin, A.-R.M. Naser, O.A.G. Wahba, J. Alloy Compd. 537, 165–170 (2012)

    Article  Google Scholar 

  40. J. Han, M. Xu, M. Jia, T. Liu, Ceram. Int. 42, 14782–14787 (2016)

    Article  Google Scholar 

  41. A.S. Gurav, Z. Duan, L. Wang, M.J. Hampden-Smith, T.T. Kodas, Chem. Mater. 5, 214–216 (1993)

    Article  Google Scholar 

  42. J.P. Morán-Lázaro, F. López-Urías, E. Muñoz-Sandoval, O. Blanco-Alonso, M. Sanchez-Tizapa, A. Carreon-Alvarez, H. Guillén-Bonilla, M. de la L. Olvera-Amador, A. Guillén-Bonilla, V.M. Rodríguez-Betancourtt, Sensors 16, 2162 (2016)

    Article  Google Scholar 

  43. Z.-X. Deng, C. Wang, X.-M. Sun, Y.D. Li, Inorg. Chem. 41, 869–873 (2002)

    Article  Google Scholar 

  44. X. Wang, Y. Li, Inorg. Chem. 45, 7522–7534 (2006)

    Article  Google Scholar 

  45. L. Gildo-Ortiz, J. Reyes-Gómez, J.M. Flores-Álvarez, H. Guillén-Bonilla, M. de la L. Olvera, V.M. Rodríguez Betancourtt, Y. Verde-Gómez, A. Guillén-Cervantes, J. Santoyo-Salazar, Ceram. Int. 24, 18821–18827 (2016)

    Article  Google Scholar 

  46. L. Gildo-Ortiz, H. Guillén-Bonilla, J. Reyes-Gómez, V.M. Rodríguez-Betancourtt, M.L. Olvera-Amador, S.I. Eguía-Eguía, A. Guillén-Bonilla, J. Santoyo-Salazar, J. Nanomater. 2017, 10 (2017)

  47. V.K. Lamer, R.H. Dinegar, J. Am. Chem. Soc. 72, 4847–4854 (1950)

    Article  Google Scholar 

  48. J. Yan, Z.J. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang, L. Zhi, F. Wei, Adv. Funct. Mater. 22, 2632–2641 (2012)

    Article  Google Scholar 

  49. F. Garbassi, Surf. Interface Anal. 2(5), 165–169 (1980)

    Article  Google Scholar 

  50. Y. Huang, P. Ruiz, J. Phys. Chem. B 109, 22420–22425 (2005)

    Article  Google Scholar 

  51. Z. Deng, D. Chen, F. Tang, J. Ren, A.J. Muscat, Nano Res. 2, 151–160 (2009)

    Article  Google Scholar 

  52. Z. Wu, X.-L. Huang, Z.-L. Wang, J.-J. Xu, H.-G. Wang, X.-B. Zhang, Sci. Rep. 4, 1–8 (2014)

    Google Scholar 

  53. V.S. Bystrov, C. Piccirillo, D.M. Tobaldi, P.M.L. Castro, J. Coutinho, S. Kopyl, R.C. Pullar, Appl. Catal. B-Environ. 196, 100–107 (2016)

    Article  Google Scholar 

  54. I.A. Auwal, A. Baykal, S. Güner, H. Sözeri, Ceram. Int. 43, 1298–1303 (2017)

    Article  Google Scholar 

  55. C. Balamurugan, A.R. Maheswari, D.-W. Lee, Sens. Actuators B 205, 289–297 (2014)

    Article  Google Scholar 

  56. A. Guillén-Bonilla, V.M. Rodríguez-Betancourtt, J.T. Guillén-Bonilla, A. Sánchez-Martínez, L. Gildo-Ortiz, J. Santoyo-Salazar, J.P. Morán-Lázaro, H. Guillén-Bonillag, O. Blanco-Alonso, Ceram. Int. 43, 13635–13644 (2017)

    Article  Google Scholar 

  57. H. Gómez-Pozos, J.L. González, G.A. Torres, J. Rodríguez, A. Maldonado, M.L. Olvera, D.R. Acosta, M. Avendaño, L. Castañeda, Sensors 13, 3432–3444 (2013)

    Article  Google Scholar 

  58. Ł Lentka, M. Kotarski, J. Smulko, U. Cindemir, Z. Topalian, C.G. Granqvist, R. Calavia, R. Ionescu, Talanta 160, 9–14 (2016)

    Article  Google Scholar 

  59. G. BlÓ“ser, T. Rühl, C. Diehl, M. Ulrich, D. Kohl, Phys. A 266, 218–223 (1999)

    Article  Google Scholar 

  60. S.C. Chang, J. Vac. Sci. Technol. 17, 366–369 (1979)

    Article  Google Scholar 

  61. C. Balamurugan, E. Vijayakumar, A. Subramania, Talanta 88, 115–120 (2012)

    Article  Google Scholar 

  62. R.B. Waghulade, P.P. Patil, R. Pasricha, Talanta 72, 594–599 (2007)

    Article  Google Scholar 

  63. Y. Wana, J. Liu, X. Fu, X. Zhang, F. Meng, X. Yu, Z. Jin, L. Kong, J. Liu, Talanta 99, 394–403 (2012)

    Article  Google Scholar 

  64. C.C. Hsiao, L.S. Luo, Sensors 14, 12219–12232 (2014)

    Article  Google Scholar 

  65. H. Gómez-Pozos, J.L. González-Vidal, G. Alberto-Torres, M.L. Olvera, L. Castañeda, Sensors 14, 403–415 (2014)

    Article  Google Scholar 

  66. A. Rydosz, A. Szkudlarek, Sensors 15, 20069–20085 (2015)

    Article  Google Scholar 

  67. M. Castro, R. Martinez, A. Martinez, H.C. Rosu, Physica A 389, 3140–3148 (2010)

    Article  Google Scholar 

  68. M. Epifani, J. Daniel Prades, E. Comini, A. Cirera, P. Siciliano, G. Fagliac, J.R. Morante, Phys. Chem. Chem. Phys. 11, 3634–3639 (2009)

    Article  Google Scholar 

  69. J.K. Srivastava, P. Pandey, V.N. Mishra, R. Dwivedi, Solid State Sci. 11, 1602–1605 (2009)

    Article  Google Scholar 

  70. F. Sun, X. Li, L. Liu, J. Wang, Sens. Actuators B 184, 220–227 (2013)

    Article  Google Scholar 

  71. V.K. Jayaraman, A. Maldonado-Álvarez, M.L. Olvera, Mater. Lett. 157, 169–171 (2015)

    Article  Google Scholar 

  72. M. Kerlau, P. Reichel, N. Bârsan, U. Weimar, S. Delsarte-Guéguen, O. Merdrignac-Conanec, Sens. Actuators B 122, 14–19 (2007)

    Article  Google Scholar 

  73. D. Koziej, N. Bârsan, V. Hoffmann, J. Szuber, U. Weimar, Sens. Actuators B 108, 75–83 (2005)

    Article  Google Scholar 

  74. P.T. Moseley, D.E. Williams, J.O.W. Norris, B.C. Tofield, Sens. Actuators B 14, 79–91 (1988)

    Article  Google Scholar 

  75. M.-I. Baraton, L. Merhari, Rev. Adv. Mater. Sci. 4, 15–24 (2003)

    Google Scholar 

  76. C.C. Wang, S.A. Akbar, M.J. Madou, J. Electroceramics 2, 273–282 (1998)

    Article  Google Scholar 

  77. C. Li, L. Meng, J. Zuo, X. Huang, Sensors 15, 3789–3800 (2015)

    Article  Google Scholar 

  78. J.P. Morán-Lázaro, E.S. Guillen-López, F. López-Urias, E. Muñoz-Sandoval, O. Blanco-Alonso, H. Guillén-Bonilla, A. Guillén-Bonilla, V.M. Rodríguez-Betancourtt, M. Sanchez-Tizapa, M. de la L. Olvera-Amador, Sensors 18, 1–14 (2018)

    Article  Google Scholar 

  79. L. Gildo-Ortiz, V.M. Rodríguez-Betancourtt, O. Blanco-Alonso, A. Guillén-Bonilla, J.T. Guillén-Bonilla, A. Guillén-Cervantes, J. Santoyo-Salazar, H. Guillén-Bonilla, Results Phys. 12, 475–483 (2019)

    Article  Google Scholar 

  80. P.S. Kolhe, A.B. Shinde, S.G. Kulkarni, N. Maiti, P.M. Koinkar, K.M. Sonawane, J. Alloy Compd. 748, 6–11 (2018)

    Article  Google Scholar 

  81. Y. Qu, H. Wang, H. Chen, M. Han, Z. Lin, Sens. Actuator B 228, 595–604 (2016)

    Article  Google Scholar 

  82. J. Liu, F. Meng, T. Luo, W. Li, M. Li, J. Liu, Talanta 82, 409–416 (2010)

    Article  Google Scholar 

  83. M. Govindhan, Z. Liu, A. Chen, Nanomaterials 6, 211 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Mexico’s National Council of Science and Technology (CONACyT) for the support granted. Likewise, we thank P. Rodríguez-Fragoso, D. Granada-Ramírez, M. Pérez-González, S. (A) Tomás, M. Guerrero, A. (B) Soto, Sergio Oliva-León, Miguel-Ángel Luna-Arias, and M. L. Olvera-Amador for their technical assistance. We thank PRODEP 2017 for the Project F-PROMEP-74/ Rev-05 (511-6/17-8091: No. 238639). The photoluminescence spectroscopy work was supported by CONACYT under Project No. 240908. The X-ray photoelectron spectroscopy work was supported by CONACYT in Projects Nos. 168505 and 205733. The authors are grateful to Environment and Renewable Energy Laboratory for the UV–Vis measurements. This investigation was carried out following the line of research “Nanostructured Semiconductor Oxides” of the academic group UDG-CA-895 “Nanostructured Semiconductors” of CUCEI, University of Guadalajara.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verónica M. Rodríguez-Betancourtt.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interests regarding the publication of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guillén-Bonilla, H., Olvera-Amador, M.L., Casallas-Moreno, Y.L. et al. Synthesis and characterization of nickel antimonate nanoparticles: sensing properties in propane and carbon monoxide. J Mater Sci: Mater Electron 30, 6166–6177 (2019). https://doi.org/10.1007/s10854-019-00918-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00918-9

Navigation