Skip to main content

Advertisement

Log in

Aqueous V2O5/activated carbon zinc-ion hybrid capacitors with high energy density and excellent cycling stability

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Hybrid metal-ion capacitors are designed to promote the energy density of supercapacitors with less sacrifice of power density. Zinc-ion hybrid supercapacitor, based on the multivalent ion storage principle, is a kind of energy storage device in which both the high energy density and power density can be achieved. Here, we propose a new configuration of zinc-ion hybrid supercapacitors composed of mild aqueous ZnSO4 electrolyte, activated carbon (AC) anode and V2O5 cathode. The operating voltage of the hybrid supercapacitor can reach to 2 V in the aqueous electrolyte when the mass ratio of AC to V2O5 is 1:1. The maximum energy density of zinc-ion hybrid capacitor is about 3.9 times higher than that of AC symmetric supercapacitor, while its maximum power density is 1.7 times higher than that of zinc-ion battery. The capacity retention of the hybrid supercapacitors is 97.3% over 6000 charge–discharge cycles at 0.5 A g−1. Compared with MnO2 zinc-ion hybrid supercapacitors system, the stable nature of V2O5 allows new zinc-ion hybrid supercapacitors system to achieve a better cycling performance. The unique electrochemical performance, low cost and high safety of the new zinc-ion hybrid supercapacitor endow it with a very wide range of applications in consumer electronics and stationary energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.F. Service, Science 313, 902–902 (2006)

    Article  Google Scholar 

  2. P. Simon, Y. Gogotsi, Nat. Mater. 7, 845–854 (2008)

    Article  Google Scholar 

  3. P. Simon, Y. Gogotsi, B. Dunn, Science 343, 1210–1211 (2014)

    Article  Google Scholar 

  4. J. Zhang, L. Dong, C. Xu, J. Hao, F. Kang, J. Li, J. Mater. Sci. 52, 5788–5798 (2017)

    Article  Google Scholar 

  5. J. Wang, L. Dong, C. Xu, D. Ren, X. Ma, F. Kang, ACS Appl. Mater. Interfaces 10, 10851–10859 (2018)

    Article  Google Scholar 

  6. V. Khomenko, E. Raymundo-Pinero, F. Béguin, J. Power Sources 153, 183–190 (2006)

    Article  Google Scholar 

  7. L. Dong, C. Xu, Y. Li, Z. Pan, G. Liang, E. Zhou, F. Kang, Q.H. Yang, Adv. Mater. 28, 9313–9319 (2016)

    Article  Google Scholar 

  8. L. Dong, G. Liang, C. Xu, W. Liu, Z.-Z. Pan, E. Zhou, F. Kang, Q.-H. Yang, Nano Energy 34, 242–248 (2017)

    Article  Google Scholar 

  9. B. Kang, G. Ceder, Nature 458, 190–193 (2009)

    Article  Google Scholar 

  10. N. Omar, M. Daowd, O. Hegazy, M. Al Sakka, T. Coosemans, P. Van den Bossche, J. Van Mierlo, Electrochim. Acta 86, 305–315 (2012)

    Article  Google Scholar 

  11. S.R. Sivakkumar, A.G. Pandolfo, Electrochim. Acta 65, 280–287 (2012)

    Article  Google Scholar 

  12. W.J. Cao, J.P. Zheng, J. Power Sources 213, 180–185 (2012)

    Article  Google Scholar 

  13. J. Ding, H. Wang, Z. Li, K. Cui, D. Karpuzov, X. Tan, A. Kohandehghan, D. Mitlin, Energy Environ. Sci. 8, 941–955 (2015)

    Article  Google Scholar 

  14. M.-S. Park, Y.-G. Lim, J.-H. Kim, Y.-J. Kim, J. Cho, J.-S. Kim, Adv. Energy Mater. 1, 1002–1006 (2011)

    Article  Google Scholar 

  15. S.R. Sivakkumar, A.S. Milev, A.G. Pandolfo, Electrochim. Acta 56, 9700–9706 (2011)

    Article  Google Scholar 

  16. G.G. Amatucci, F. Badway, A. Du Pasquier, T. Zheng, J. Electrochem. Soc. 148, A930 (2001)

    Article  Google Scholar 

  17. A.D. Pasquier, I. Plitz, J. Gural, S. Menocal, G. Amatucci, J. Power Sources 113, 62–71 (2003)

    Article  Google Scholar 

  18. X. Yu, C. Zhan, R. Lv, Y. Bai, Y. Lin, Z.-H. Huang, W. Shen, X. Qiu, F. Kang, Nano Energy 15, 43–53 (2015)

    Article  Google Scholar 

  19. R.V. Salvatierra, D. Zakhidov, J. Sha, N.D. Kim, S.K. Lee, A.O. Raji, N. Zhao, J.M. Tour, ACS Nano 11, 2724–2733 (2017)

    Article  Google Scholar 

  20. Z.-S. Wu, W. Ren, L. Xu, F. Li, H.-M. Cheng, ACS Nano 5, 5463–5471 (2011)

    Article  Google Scholar 

  21. B. Ji, F. Zhang, N. Wu, Y. Tang, Adv. Energy Mater. 7, 1700913 (2017)

    Article  Google Scholar 

  22. M. Wang, Y. Tang, Adv. Energy Mater. 8, 1703320 (2018)

    Article  Google Scholar 

  23. A. Du Pasquier, A. Laforgue, P. Simon, J. Power Sources 125, 95–102 (2004)

    Article  Google Scholar 

  24. Q. Wang, Z.H. Wen, J.H. Li, Adv. Funct. Mater. 16, 2141–2146 (2010)

    Article  Google Scholar 

  25. B. Li, J. Zheng, H. Zhang, L. Jin, D. Yang, H. Lv, C. Shen, A. Shellikeri, Y. Zheng, R. Gong, J.P. Zheng, C. Zhang, Adv. Mater. 30, 1705670 (2018)

    Article  Google Scholar 

  26. E. Lim, C. Jo, J. Lee, Nanoscale 8, 7827–7833 (2016)

    Article  Google Scholar 

  27. S.K. Kong, B.K. Kim, W.Y. Yoon, J. Electrochem. Soc. 159, A1551–A1553 (2012)

    Article  Google Scholar 

  28. F. Zhang, T. Zhang, X. Yang, L. Zhang, K. Leng, Y. Huang, Y. Chen, Energy Environ. Sci. 6, 1623–1632 (2013)

    Article  Google Scholar 

  29. D.P. Dubal, O. Ayyad, V. Ruiz, P. Gómezromero, Chem. Soc. Rev. 44, 1777 (2015)

    Article  Google Scholar 

  30. R. Yi, S. Chen, J. Song, M.L. Gordin, A. Manivannan, D. Wang, Adv. Funct. Mater. 24, 7433–7439 (2015)

    Article  Google Scholar 

  31. L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, J. Power Sources 226, 272–288 (2013)

    Article  Google Scholar 

  32. H. Wang, M. Wang, Y. Tang, Energy Storage Mater. 13, 1–7 (2018)

    Article  Google Scholar 

  33. L. Dong, X. Ma, Y. Li, L. Zhao, W. Liu, J. Cheng, C. Xu, B. Li, Q.H. Yang, F. Kang, Energy Storage Mater. 13, 96–102 (2018)

    Article  Google Scholar 

  34. X. Ma, J. Cheng, L. Dong, W. Liu, J. Mou, L. Zhao, J. Wang, D. Ren, J. Wu, C. Xu, F. Kang, Energy Storage Mater. (2018). https://doi.org/10.1016/j.ensm.2018.10.020

    Google Scholar 

  35. X. Guo, G. Fang, Z. Guozhao, W. Zhang, Z. Wenyu, S. Jiang, W. Lutong, W. Liangbing, C. Wang, L. Chao, T. Tianquan, Y. Tang, S. Liang, Adv. Energy Mater. 8, 1614–6832 (2018)

    Google Scholar 

  36. F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu, Chen, Nat. Commun. 9, 1656 (2018)

    Article  Google Scholar 

  37. W. Sun, F. Wang, S. Hou, C. Yang, X. Fan, Z. Ma, T. Gao, F. Han, R. Hu, M. Zhu, C. Wang, J. Am. Chem. Soc. 139, 9775–9778 (2017)

    Article  Google Scholar 

  38. D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, Nat. Energy 1, 16119 (2016)

    Article  Google Scholar 

  39. P. Hu, M. Yan, T. Zhu, X. Wang, X. Wei, J. Li, L. Zhou, Z. Li, L. Chen, L. Mai, ACS Appl. Mater. Interfaces 9, 42717–42722 (2017)

    Article  Google Scholar 

  40. M. Song, H. Tan, D. Chao, H.J. Fan, Adv. Funct. Mater. 28, 1802564 (2018)

    Article  Google Scholar 

  41. G.L. Li, Z. Yang, Y. Jiang, C.H. Jin, W. Huang, X.L. Ding, Y.H. Huang, Nano Energy 25, 211–217 (2016)

    Article  Google Scholar 

  42. C. Xu, B. Li, H. Du, F. Kang, Angew. Chem. Int. Ed. Engl. 51, 933–935 (2012)

    Article  Google Scholar 

  43. W. Liu, J. Hao, C. Xu, J. Mou, L. Dong, F. Jiang, Z. Kang, J. Wu, B. Jiang, F. Kang, Chem. Commun. (Cambridge UK) 53, 6872–6874 (2017)

    Article  Google Scholar 

  44. R. Hemmati, H. Saboori, Renew. Sustain. Energy Rev. 65, 11–23 (2016)

    Article  Google Scholar 

  45. V. Aravindan, W. Chuiling, S. Madhavi, J. Mater. Chem. 22, 16026–16031 (2012)

    Article  Google Scholar 

  46. S. Sivakkumar, A. Pandolfo, Electrochim. Acta 65, 280–287 (2012)

    Article  Google Scholar 

  47. M. Yan, P. He, Y. Chen, S. Wang, Q. Wei, K. Zhao, X. Xu, Q. An, Y. Shuang, Y. Shao, K.T. Mueller, L. Mai, J. Liu, J. Yang, Adv. Mater. 30, 1703725 (2017)

    Article  Google Scholar 

  48. L. Dong, G. Liang, C. Xu, D. Ren, J. Wang, Z.-Z. Pan, B. Li, F. Kang, Q.-H. Yang, J. Mater. Chem. A 5, 19934–19942 (2017)

    Article  Google Scholar 

  49. D. Ge, L. Yang, L. Fan, C. Zhang, X. Xiao, Y. Gogotsi, S. Yang, Nano Energy 11, 568–578 (2015)

    Article  Google Scholar 

  50. J. Foroughi, G.M. Spinks, D. Antiohos, A. Mirabedini, S. Gambhir, G.G. Wallace, S.R. Ghorbani, G. Peleckis, M.E. Kozlov, M.D. Lima, Adv. Funct. Mater. 24, 5859–5865 (2014)

    Article  Google Scholar 

  51. Y.-J. Kim, B.-J. Lee, H. Suezaki, T. Chino, Y. Abe, T. Yanagiura, K.C. Park, M. Endo, Carbon 44, 1592–1595 (2006)

    Article  Google Scholar 

  52. H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han, Z. Nie, C. Wang, J. Yang, X. Li, P. Bhattacharya, Nat. Energy 1, 16039 (2016)

    Article  Google Scholar 

  53. X. Xiao, D. Ahn, Z. Liu, J.-H. Kim, P. Lu, Electrochem. Commun. 32, 31–34 (2013)

    Article  Google Scholar 

  54. D.H. Jang, Y.J. Shin, S.M. Oh, J. Electrochem. Soc. 143, 2204–2211 (1996)

    Article  Google Scholar 

  55. Z. Ning, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu, J. Chen, J. Am. Chem. Soc. 138, 12894 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial supports from Shenzhen Technical Plan Project (No. JCYJ20160301154114273), National Key Basic Research (973) Program of China (No. 2014CB932400), International Science & Technology Cooperation Program of China (No. 2016YFE0102200), and Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01N111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengjun Xu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2765 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Wang, J., Wang, X. et al. Aqueous V2O5/activated carbon zinc-ion hybrid capacitors with high energy density and excellent cycling stability. J Mater Sci: Mater Electron 30, 5478–5486 (2019). https://doi.org/10.1007/s10854-019-00841-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00841-z

Navigation