Skip to main content
Log in

Structural, dielectric and ferroelectric properties of lead free Gd-modified BiFeO3–BaTiO3 solid solution

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Due to the high Curie temperature the rare-earth-modified bismuth ferrite (BiFeO3 or BFO) and/or its derivatives have uncomplicated lead-free chemistries and simple perovskite structures have attracted the materials community. So, in this report, structural, micro-structural, ferroelectric and electrical characteristics of a rare-earth (Gd)-modified perovskite BiFeO3–BaTiO3 solid solution, fabricated by a cost effective solid-state reaction technique, have been presented. The structural analysis using X-ray diffraction pattern and data indicates the evolution of a mono-phase distorted perovskite structure with the existence of rhombohedral structure. The ambient temperature scanning electron micrograph of Gd modified BiFeO3–BaTiO3 solid solution exhibits uniform grain distribution over the surface. The dielectric parameters are found to be frequency and temperature dependent. The well defined polarization–electric field hysteresis loop of the samples at room temperature suggest that Gd substitution at the Bismuth site of the solid solution strongly affects remnant and saturated polarization of the materials. The ac conductivity spectra obeys the Jonscher’s power law. Based on the derived parameters of Gd modified BiFeO3–BaTiO3 solid solution, it is expected to fabricate a functional device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W. Eerensten, N.D. Mathur, J.F. Scoot, Nature 442, 759 (2006)

    Article  Google Scholar 

  2. Y. Guo, P. Xiao, R. Wen, Y. Wan, Q. Zheng, D. Shi, K. Ho Lam, M. Liu, D. Lin, J. Mater. Chem. C 3, 5811 (2015)

    Article  Google Scholar 

  3. C.S. Tu, R.R. Chien, T.-H. Wang, J. Anthoninappen, Y.-T. Peng, J. Appl. Phys. 113, 17D908 (2013)

    Article  Google Scholar 

  4. Y. Wei, X. Wang, J. Zhu, X. Wang, J. Jia, J. Am. Ceram. Soc. 96, 3163 (2013)

    Google Scholar 

  5. S. Unruan, M. Unruan, T. Monnar, S. Priya, R. Yimnirun, J. Am. Ceram. Soc. 98, 3291 (2015)

    Article  Google Scholar 

  6. S. Pattanayak, R.N.P. Choudhary, S.R. Shannigrahi, P.R. Das, R. Padhee, J. Magn. Magn. Mater. 341, 158 (2013)

    Article  Google Scholar 

  7. X.M. Chen, J.L. Wang, G.L. Yuan, D. Wu, J.M. Liu, J. Yin, Z.G. Liu, J. Alloys Compd. 541, 173 (2012)

    Article  Google Scholar 

  8. W. Dong, Y.P. Guo, B. Guo, H.Y. Liu, H. Li, H.Z. Liu, Mater. Lett. 91, 359 (2013)

    Article  Google Scholar 

  9. X.J. Xi, S.Y. Wang, W.F. Liu, H.J. Wang, F. Guo, X. Wang, J. Gao, D.J. Li, J. Magn. Magn. Mater. 355, 259 (2014)

    Article  Google Scholar 

  10. H.L. Zhang, W. Jo, K. Wang, K.G. Webber, Ceram. Int. 40, 4759 (2014)

    Article  Google Scholar 

  11. T.H. Wang, C.S. Tu, Y. Ding, T.C. Lin, C.S. Ku, W.C. Yang, H.H. Yu, K.T. Wu, Y.D. Yao, H.Y. Lee, Curr. Appl. Phys. 11, S240–S243 (2011)

    Article  Google Scholar 

  12. R.A.M. Gotardo, D.S.F. Viana, M. Olzon-Dionysio, S.D. Souza, D. Garcia, J.A. Eiras, M.F.S. Alves, L.F. Cotica, I.A. Santos, A.A. Coelho, J. Appl. Phys. 112, 104112 (2012)

    Article  Google Scholar 

  13. J. Walker, H. Ursic, A. Bencan, B. Malic, H. Simons, I. Reaney, G. Viola, V. Nagarajanand, T. Rojac, J. Mater. Chem. C 4, 7859 (2016)

    Article  Google Scholar 

  14. C. Behera, R.N.P. Choudhary, P.R. Das, J. Mater. Sci.: Mater. Electron. 25, 2086 (2014)

    Google Scholar 

  15. X. Lu, W. Bian, Y. Li, H. Zhu, Z. Fu, Q. Zhang, J. Am. Ceram. Soc. 101, 1646–1654 (2018)

    Article  Google Scholar 

  16. X. Lu, W. Bian, C. Min, Z. Fu, Q. Zhang, H. Zhu, Ceram. Int. 44, 10028–10034 (2018)

    Article  Google Scholar 

  17. P. Kumar, M. Kar, A.I.P. Conf. Proc. 1536, 1041 (2013)

    Google Scholar 

  18. M.M. Kumar, A. Srinivas, S.V. Suryanarayana, J. Appl. Phys. 87, 855 (2000)

    Article  Google Scholar 

  19. T.H. Wang, C.S. Tu, H.Y. Chen, Y. Ding, T.C. Lin, Y.D. Yao, V.H. Schmidt, K.T. Wu, J. Appl. Phys. 109, 044101 (2011)

    Article  Google Scholar 

  20. E. Wu, POWD (School of Physical Sciences, Flinders University South Bedford Park, Bedford Park, 1989)

    Google Scholar 

  21. M.W. Lufaso, T.A. Vanderach, M. Pazos, I. Levin, R.S. Roth, J.C. Nio, V. Provenzano, P.K. Schenck, J. Solid State Chem. 179, 3900 (2006)

    Article  Google Scholar 

  22. J.R. Cheng, L.E. Cross, J. Appl. Phys. 94, 5188 (2003)

    Article  Google Scholar 

  23. L. Zivkovie, V. Paunovie, M. Milijkovie, M.M. Ristic, Mater. Sci. Forum 518, 229 (2006)

    Article  Google Scholar 

  24. T. Zheng, J. Wu, J. Mater. Chem. C 3, 3684 (2015)

    Article  Google Scholar 

  25. J.C. Anderson, Dielectrics (Chapman & Hall, London, 1964)

    Google Scholar 

  26. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)

    Article  Google Scholar 

  27. V.I. Gibalov, G.J. Pietsch, Plasma Sources Sci. Technol. 21, 024010 (2012)

    Article  Google Scholar 

  28. Z. Cen, C. Zhou, H. Yang, Q. Zhou, W. Li, C. Yan, L. Cao, J. Song, L. Peng, J. Am. Ceram. Soc. 96, 2252 (2013)

    Article  Google Scholar 

  29. A. Chen, Y. Zhi, L.E. Cross, Phys. Rev. B 62, 228 (2000)

    Article  Google Scholar 

  30. J.E. Garcia, V. Gomis, R. Perez, A. Albareda, J.A. Eiran, Appl. Phys. Lett. 91, 0429021 (2007)

    Google Scholar 

  31. Z. Dai, Y. Akishige, J. Phys. D 43, 445403 (2010)

    Article  Google Scholar 

  32. L. Bellaiche, A. Garcı´a, D. Vanderbilt, Phys. Rev. B 64, 060103 (2001)

    Article  Google Scholar 

  33. K.S. Kumar, C. Venkateswar, D. Kannan, B. Tiwari, M.S.R. Rao, J. Phys. D 45, 415302 (2012)

    Article  Google Scholar 

  34. A.K. Jonscher, Nature 267, 673 (1977)

    Article  Google Scholar 

  35. S. Pattanayak, R.N.P. Choudhary, R. Piyush, Das, J. Mater. Sci.: Mater. Electron. 24, 2767 (2013)

    Google Scholar 

  36. G. Catalan, J.F. Scottt, Adv. Mater. 21, 2463 (2009)

    Article  Google Scholar 

  37. S. Chandarak, M. Unruan, T. Sareein, A. Ngamjarurojana, S. Maensiri, P. Laoratanakul, S. Ananta, R. Yimnirun, J. Magn. 14, 120 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

Author (CB) is gratefully acknowledged the grant received from SERB, DST, Govt. of India (PDF/2016/001078 dated 26th July.2016) to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Behera.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, C., Pattanaik, A.K. Structural, dielectric and ferroelectric properties of lead free Gd-modified BiFeO3–BaTiO3 solid solution. J Mater Sci: Mater Electron 30, 5470–5477 (2019). https://doi.org/10.1007/s10854-019-00840-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00840-0

Navigation