Skip to main content
Log in

Tailoring the shape and size of Fe3O4 nanocrystals by oxidation–precipitation processes for microwave absorption enhancement

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Microwave absorbing materials refined into nanoscale are known to have fascinating electromagnetic properties, whereas investigations on their shape and size dependence to microwave absorption performance are insufficient. In this study, single-crystal Fe3O4 with various shapes of nanoblocks, nanowires and nanospheres were prepared by surfactant-assisted oxidation–precipitation processes in oxygen-free environment without autoclaves. In microstructural characterizations, a broad size distribution of 30–200 nm for Fe3O4 nanoblocks and a uniform size around 50 nm for Fe3O4 nanospheres were obtained respectively, while Fe3O4 nanowires exhibited non-uniform length-to-diameter ratios. In electromagnetic analysis, Fe3O4 nanoblocks have higher saturation magnetization and increased coercivity in contrast to Fe3O4 nanowires and nanospheres. Both permeability and permittivity of Fe3O4 nanospheres are limited, while an increased attenuation constant is obtained at higher frequency due to the effective electromagnetic matching. As the absorbent thickness reaches 3.5 mm, the reflection loss of Fe3O4 nanowires achieves the minimum value of − 29.7 dB around 7.3 GHz, while the effective absorbing bandwidth (reflection loss ≤ − 10 dB) of Fe3O4 nanoblocks covers 5.6 GHz, demonstrating their potential applications in electromagnetic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.K. Kefeni, T.A.M. Msagati, B.B. Mamba, Ferrite nanoparticles: synthesis, characterisation and applications in electronic device. Mater. Sci. Eng. B 215, 37–55 (2017)

    Article  Google Scholar 

  2. L.C. Cheng, H.Y. Zhou, J.L. Xiong, S.K. Pan, J.L. Luo, Microstructure, electromagnetic and microwave absorbing properties of plate-like LaCeNi powder. J. Mater. Sci. Mater. Electron. 29, 18030–18035 (2018)

    Article  Google Scholar 

  3. S.L. Wen, Y. Liu, X.C. Zhao, Effect of annealing on electromagnetic performance and microwave absorption of spherical cobalt particles. J. Phys. D 48, 405001 (2015)

    Article  Google Scholar 

  4. I.M. De Rosa, F. Sarasini, M.S. Sarto, A. Tamburrano, EMC impact of advanced carbon fiber/carbon nanotube reinforced composites for next-generation aerospace applications. IEEE Trans. Electromagn. Compat. 50, 556–563 (2008)

    Article  Google Scholar 

  5. T. Zhang, B. Xiao, P.Y. Zhou, L. Xia, G.W. Wen, H.B. Zhang, Porous-carbon-nanotube decorated carbon nanofibers with effective microwave absorption properties. Nanotechnology 28, 355708 (2017)

    Article  Google Scholar 

  6. A. Xie, F. Wu, M.X. Sun, X.Q. Dai, Z.H. Xu, Y.Y. Qiu, Y. Wang, M.Y. Wang, Self-assembled ultralight three-dimensional polypyrrole aerogel for effective electromagnetic absorption. Appl. Phys. Lett. 106, 222902 (2015)

    Article  Google Scholar 

  7. Y. Xia, S.F. Yuan, S.B. An, J. Jiang, L. Gan, T.J. Zhang, Microwave dielectric properties of the (1-x)(Mg0.97Zn0.03)(Ti0.97Sn0.03)O3-x(Ca0.8Na0.1Sm0.1)TiO3 ceramic system. J. Mater. Sci. Mater. Electron. 29, 18791–18796 (2018)

    Article  Google Scholar 

  8. T.A. Taha, S. Elrabaie, M.T. Attia, Green synthesis, structural, magnetic, and dielectric characterization of NiZnFe2O4/C nanocomposite. J. Mater. Sci. Mater. Electron. 29, 18493–18501 (2018)

    Article  Google Scholar 

  9. M. Zeng, J. Liu, M. Yue, H.Z. Yang, H.R. Dong, W.K. Tang, H. Jiang, X.F. Liu, R.H. Yu, High-frequency electromagnetic properties of the manganese ferrite nanoparticles. J. Appl. Phys. 117, 17B527 (2015)

    Article  Google Scholar 

  10. R. Han, W. Li, W.W. Pan, M.G. Zhu, D. Zhou, F.S. Li, 1D magnetic materials of Fe3O4 and Fe with high performance of microwave absorption fabricated by electrospinning method. Sci. Rep. 4, 7493 (2014)

    Article  Google Scholar 

  11. J. Liu, M. Zeng, R.H. Yu, X.F. Liu, M.G. Zhu, Size influence to the high-frequency properties of granular magnetite nanoparticles. IEEE T. Magn. 50, 2801304 (2014)

    Google Scholar 

  12. A.G. Yan, Y.J. Liu, Y. Liu, X.H. Li, Z. Lei, P.T. Liu, A NaAc-assisted large-scale coprecipitation synthesis and microwave absorption efficiency of Fe3O4 nanowires. Mater. Lett. 68, 402–405 (2012)

    Article  Google Scholar 

  13. K. Jia, J.D. Zhang, X. Huang, X.B. Liu, Size dependent electromagnetic properties of Fe3O4 nanospheres. Chem. Phys. Lett. 614, 31–35 (2014)

    Article  Google Scholar 

  14. L.L. Zhang, P. Dai, X.X. Yu, Y. Li, Z.W. Bao, J. Zhu, K.R. Zhu, M.Z. Wu, X.S. Liu, G. Li, H. Bi, The preparation of Fe3O4 cube-like nanoparticles via the ethanol reduction of α-Fe2O3 and the study of its electromagnetic wave absorption. Appl. Surf. Sci. 359, 723–728 (2015)

    Article  Google Scholar 

  15. Y. Liu, T.T. Cui, Y.N. Li, Y.T. Zhao, Y.C. Ye, W.H. Wu, G.X. Tong, Effects of crystal size and sphere diameter on static magnetic and electromagnetic properties of monodisperse Fe3O4 microspheres. Mater. Chem. Phys. 173, 152–160 (2016)

    Article  Google Scholar 

  16. W.X. Li, B.L. Lv, Y. Xu, Sub-30 nm Fe3O4 and γ-Fe2O3 octahedral particles: preparation and microwave absorption properties. J. Nanoparticle Res. 15, 2114 (2013)

    Article  Google Scholar 

  17. M. Jazirehpour, S.A.S. Ebrahimi, Effect of aspect ratio on dielectric, magnetic, percolative and microwave absorption properties of magnetite nanoparticles. J. Alloy Compd. 638, 188–196 (2015)

    Article  Google Scholar 

  18. Y. Yang, M. Li, Y.P. Wu, B.Y. Zong, J. Ding, Size-dependent microwave absorption properties of Fe3O4 nanodiscs. RSC Adv. 6, 25444–25448 (2016)

    Article  Google Scholar 

  19. X.L. Wang, Y.G. Liu, H.Y. Han, K. Mølhave, H.Y. Sun, Enhanced high-frequency microwave absorption of Fe3O4 architectures based on porous nanoflake. Ceram. Int. 43, 16013–16017 (2017)

    Article  Google Scholar 

  20. X. Liu, K.Y. Cao, Y.Z. Chen, Y.T. Ma, Q.F. Zhang, D.Q. Zeng, X.L. Liu, L.S. Wang, D.L. Peng, Shape-dependent magnetic and microwave absorption properties of iron oxide nanocrystals. Mater. Chem. Phys. 192, 339–348 (2017)

    Article  Google Scholar 

  21. G.X. Tong, W.H. Wu, R. Qiao, J.H. Yuan, J.G. Guan, H.S. Qian, Morphology dependence of static magnetic and microwave electromagnetic characteristics of polymorphic Fe3O4 nanomaterials. J. Mater. Res. 26, 1639–1645 (2011)

    Article  Google Scholar 

  22. H.Z. Zhang, J.H. Zhao, X.M. Ou, Facile synthesis of Fe3O4 nanowires at low temperature (80 °C) without autoclaves and their electromagnetic performance. Mater. Lett. 209, 48–51 (2017)

    Article  Google Scholar 

  23. K. Pal, U.N. Maiti, T.P. Majumder, S.C. Debnath, A facile strategy for the fabrication of uniform CdS nanowires with high yield and its controlled morphological growth with the assistance of PEG in hydrothermal route. Appl. Surf. Sci. 258, 163–168 (2011)

    Article  Google Scholar 

  24. K. Seo, K. Sinha, E. Novitskaya, O.A. Graeve, Polyvinylpyrrolidone (PVP) effects on iron oxide nanoparticle formation. Mater. Lett. 215, 203–206 (2018)

    Article  Google Scholar 

  25. X.G. Huang, Y.Y. Chen, J.H. Yu, J. Zhang, T.Y. Sang, G.X. Tao, H.L. Zhu, Fabrication and electromagnetic loss properties of Fe3O4 nanofibers. J. Mater. Sci.: Mater. Electron. 26, 3474–3478 (2015)

    Google Scholar 

  26. L.Y. Zhang, Y.F. Zhang, Fabrication and magnetic properties of Fe3O4 nanowire arrays in different diameters. J. Magn. Magn. Mater. 321, L15–L20 (2009)

    Article  Google Scholar 

  27. J.G. Zhao, J.Z. Yin, S.G. Yang, Hydrothermal synthesis and magnetic properties of α-MnO2 nanowires. Mater. Res. Bull. 47, 896–900 (2012)

    Article  Google Scholar 

  28. Y.J. Liang, F.G. Fan, M. Ma, J.F. Sun, J. Chen, Y. Zhang, N. Gu, Size-dependent electromagnetic properties and the related simulations of Fe3O4 nanoparticles made by microwave-assisted thermal decomposition. Colloid. Surface. A 530, 191–199 (2017)

    Article  Google Scholar 

  29. S.L. Wen, Y. Liu, X.C. Zhao, J.W. Cheng, H. Li, Synthesis, dual-nonlinear magnetic resonance and microwave absorption properties of nanosheet hierarchical cobalt particles. Phys. Chem. Chem. Phys. 16, 18333–18340 (2014)

    Article  Google Scholar 

  30. Q. Zhang, C.F. Li, Y.N. Chen, Z. Han, H. Wang, Z.J. Wang, D.Y. Geng, W. Liu, Z.D. Zhang, Effect of metal grain size on multiple microwave resonances of Fe/TiO2 metal-semiconductor composite. Appl. Phys. Lett. 97, 133115 (2010)

    Article  Google Scholar 

  31. A. Aharoni, Exchange resonance modes in a ferromagnetic sphere. J. Appl. Phys. 69, 7762–7764 (1991)

    Article  Google Scholar 

  32. P. Toneguzzo, G. Viau, O. Acher, F. Fiévet-Vincent, F. Fiévet, Monodisperse ferromagnetic particles for microwave applications. Adv. Mater. 10, 1032–1035 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities of China (No. 2015XKMS066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanzhuo Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Zhang, H. & Ou, X. Tailoring the shape and size of Fe3O4 nanocrystals by oxidation–precipitation processes for microwave absorption enhancement. J Mater Sci: Mater Electron 30, 4943–4952 (2019). https://doi.org/10.1007/s10854-019-00791-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00791-6

Navigation