Skip to main content
Log in

Lanthanum modified BFO–BT solid solutions: a structural, electrical and magnetic study

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, structural, electrical and magnetic characteristics of Lanthanum-modified multiple perovskite BiFeO3–BaTiO3(BFO–BT) solid solutions have been reported. Detailed structural analysis via Rietveld refinement technique using X-ray diffraction pattern provides the evolution of a mono-phase distorted perovskite structure with the concurrence of rhombohedral structure. Scanning electron micrograph of La modified BFO–BT solid solutions at ambient temperature exhibits that with varying La content in the material, more symmetric structure, high density and uniform grain distribution are obtained. The dielectric parameters are strongly depends on composition, frequency and temperature. The well defined polarization–electric field hysteresis loop of the samples at room temperature suggests that La substitution at the Bi site of the solid solutions strongly affects remnant and saturated polarization of the materials. The low lanthanum concentration in the solid solutions is able to provide a well-defined ferromagnetic characteristic with saturation magnetization (Ms) in the range of 6–9 emu/g and remnant magnetization(Mr) 1.5–2 emu/g and shows that BT substitution in BFO releases latent magnetization whereas addition of higher content of barium titanate shows an anti-ferromagnetic behaviour which has been confirmed by M-H hysteresis loop and Arrot plots. Based on the derived parameters of La modified solid solution, it is expected to fabricate a multifunctional device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Lorenz, D. Hirsch, C. Patzig, T. Höche, S. Hohenberger, H. Hochmuth, V. Lazenka, K. Temst, M. Grundmann, ACS Appl. Mater. Interfaces 9, 18956–18965 (2017)

    Article  Google Scholar 

  2. Y. Guo, P. Xiao, R. Wen, Y. Wan, Q. Zheng, D. Shi, K. Ho Lam, M. Liu, D. Lin, J. Mater. Chem. C 3, 5811 (2015)

    Article  Google Scholar 

  3. C.S. Tu, R.R. Chien, T.-H. Wang, J. Anthoninappen, Y.-T. Peng, J. Appl. Phys. 113, 17D908 (2013)

    Article  Google Scholar 

  4. S. Kim, G.P. Khanal, H.-W. Nam, I. Fujii, S. Ueno, C. Moriyoshi, Y. Kuroiwa, S. Wada, J. Appl. Phys. 122, 164105 (2017)

    Article  Google Scholar 

  5. W. Gao, J. Lv, X. Lou, J. Am. Ceram. Soc. 101, 3383–3392 (2018)

    Article  Google Scholar 

  6. S. Jangra, S. Sanghi, A. Agarwal, M. Rangi, K. Kaswan, Ceram. Int., 44, 7683–7693(2018)

    Article  Google Scholar 

  7. Y. Wei, X. Wang, J. Zhu, X. Wang, J. Jia, J. Am. Ceram. Soc. 96, 3163 (2013)

    Google Scholar 

  8. J. Zhuang, J. Zhao, L.-W. Su, H. Wu, A.A. Bokov, W. Ren, Z.-G. Ye, J. Mater. Chem. C 3, 12450–12456 (2015)

    Article  Google Scholar 

  9. S. Murakami, N. Thafeem, A. Faheem Ahmed, D. Wang, A. Feteira, D.C. Sinclair, I.M. Reaney, J. Eur. Ceram. Soc. 38, 4220–4231 (2018)

    Article  Google Scholar 

  10. W. Dong, Y.P. Guo, B. Guo, H.Y. Liu, H. Li, H.Z. Liu, Mater. Lett. 91, 359 (2013)

    Article  Google Scholar 

  11. X.J. Xi, S.Y. Wang, W.F. Liu, H.J. Wang, F. Guo, X. Wang, J. Gao, D.J. Li, J. Magn. Magn. Mater. 355, 259 (2014)

    Article  Google Scholar 

  12. Z. Jia, X. Wu, M. Zhang, J.J. Liou, Ferroelectrics 504, 172–179 (2016)

    Article  Google Scholar 

  13. A. Ahlawat, S. Satapathy, R.J. Choudhary, M.K. Singh, P.K. Gupta, Mater. Lett. 181, 123–126 (2016)

    Article  Google Scholar 

  14. S.N. Das, S.K. Pradhan, S. Bhuyan, et.al., J. Mater. Sci.: Mater. Electron. 28, 18913 (2017)

    Google Scholar 

  15. T. Zheng, J. Wu, Quenched bismuth ferrite-barium titanate lead-free piezoelectric ceramics. J. Alloys Compd. 676, 505–512 (2016)

    Article  Google Scholar 

  16. S. Unruan, M. Unruan, T. Monnar, S. Priya, R. Yimnirun, J. Am. Ceram. Soc. 98, 3291 (2015)

    Article  Google Scholar 

  17. H.L. Zhang, W. Jo, K. Wang, K.G. Webber, Ceram. Int. 40, 4759 (2014)

    Article  Google Scholar 

  18. T.H. Wang, C.S. Tu, Y. Ding, T.C. Lin, C.S. Ku, W.C. Yang, H.H. Yu, K.T. Wu, Y.D. Yao, H.Y. Lee, Curr. Appl. Phys. 11, S240–S243 (2011)

    Article  Google Scholar 

  19. T.J. Park, G.C. Papaefthymiou, A.J. Viescas, Y. Lee, H. Zhou, S.S. Wong, Phys. Rev. B 82, 024431 (2010)

    Article  Google Scholar 

  20. R.A.M. Gotardo, D.S.F. Viana, M. Olzon-Dionysio, S.D. Souza, D. Garcia, J.A. Eiras, M.F.S. Alves, L.F. Cotica, I.A. Santos, A.A. Coelho, J. Appl. Phys. 112, 104112 (2012)

    Article  Google Scholar 

  21. Y.T. Peng, S.H. Chiou, C.H. Hsiao, C. Ouyang, C. Tu, Sci. Rep. 7, 45164 (2017)

    Article  Google Scholar 

  22. T. Zheng, J. Wu, J. Mater. Chem. C 3, 3684 (2015)

    Article  Google Scholar 

  23. S. Sharma, V. Singh, A. Anshul, J.M. Siqueiros, R.K. Dwivedi, J. Appl. Phys. 123(20), 204102 (2018)

    Article  Google Scholar 

  24. C. Behera, R.N.P. Choudhary, P.R. Das, J. Mater. Sci.: Mater. Electron. 25, 2086 (2014)

    Google Scholar 

  25. M. Shariq, D. Kaur, V.S. Chandel, Chin. J. Phys. 55, 2192–2198 (2017)

    Article  Google Scholar 

  26. M.H. Lee, D.J. Kim, J.S. Park, M.-H. Kim, T.K. Song, S. Kumar, W.J. Kim, D. Do, I. Hwang, B.H. Park, K.S. Choi, Curr. Appl. Phys. 16, 1449–1452 (2016)

    Article  Google Scholar 

  27. X. Qi, M. Zhang, X. Zhang, Y. Gu, H. Zhu, W. Yanga, Y. Lia, RSC Adv. 7, 51801 (2017)

    Article  Google Scholar 

  28. J. Wu, Z. Fan, D. Xiao, J. Zhu, J. Wang, Prog. Mater. Sci. 84, 335–402 (2016)

    Article  Google Scholar 

  29. T.H. Wang, C.S. Tu, H.Y. Chen, Y. Ding, T.C. Lin, Y.D. Yao, V.H. Schmidt, K.T. Wu, J. Appl. Phys. 109, 044101 (2011)

    Article  Google Scholar 

  30. E. Wu, POWD, School of Physical Sciences, Flinders University South Bedford Park, SA 5042 Australia

  31. M.W. Lufaso, T.A. Vanderach, M. Pazos, I. Levin, R.S. Roth, J.C. Nio, V. Provenzano, P.K. Schenck, J. Solid State Chem. 179, 3900 (2006)

    Article  Google Scholar 

  32. J.R. Cheng, L.E. Cross, J. Appl. Phys. 94, 5188 (2003)

    Article  Google Scholar 

  33. T. Leist, K.G. Webber, W. Jo, T. Granzow, E. Aulbach, J. Suffner, J. Rödel, J. Appl. Phys. 109, 054109 (2011)

    Article  Google Scholar 

  34. L. Zivkovie, V. Paunovie, M. Milijkovie, M.M. Ristic, Mat. Sci. Forum 518, 229 (2006)

    Article  Google Scholar 

  35. C. Behera, R.N.P. Choudhary, P.R. Das, Struct. Mater. Res. Exp. 5, 056301 (2018)

    Article  Google Scholar 

  36. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)

    Article  Google Scholar 

  37. V.I. Gibalov, G.J. Pietsch, Plasma Sources Sci. Technol. 21, 024010 (2012)

    Article  Google Scholar 

  38. R. Ahmed Malik, A. Zaman, A. Hussain, A. Maqbool, T.K. Song, W.J. Kim, Y.S. Sung, M.H. Kim, J. Eur. Ceram. Soc. 38, 2259–2263 (2018)

    Article  Google Scholar 

  39. Z. Cen, C. Zhou, H. Yang, Q. Zhou, W. Li, C. Yan, L. Cao, J. Song, L. Peng, J. Am. Ceram. Soc. 96, 2252 (2013)

    Article  Google Scholar 

  40. A. Chen, Y. Zhi, L.E. Cross, Phys. Rev. B 62, 228 (2000)

    Article  Google Scholar 

  41. J.E. Garcia, V. Gomis, R. Perez, A. Albareda, J.A. Eiran, Appl. Phys. Lett. 91, 0429021 (2007)

    Google Scholar 

  42. Z. Dai, Y. Akishige, J. Phys. D 43, 445403 (2010)

    Article  Google Scholar 

  43. L. Bellaiche, A. Garcı´a, D. Vanderbilt, Phys. Rev. B 64, 060103 (2001)

    Article  Google Scholar 

  44. K.S. Kumar, C. Venkateswar, D. Kannan, B. Tiwari, M.S.R. Rao, J. Phys. D 45, 415302 (2012)

    Article  Google Scholar 

  45. S. Shankar, Brijmohan, S. Kumar, O.P. Thakur, A.K. Ghosh, Phys. Lett. A 381, 379–386 (2017)

    Article  Google Scholar 

  46. S.K. Singh Patel, J.H. Lee, M.-K. Kim, B. Bhoi, S.-K. Kim, J. Mater. Chem. C 6(3), 526 (2018)

    Article  Google Scholar 

  47. S. Chandarak, M. Unruan, T. Sareein, A. Ngamjarurojana, S. Maensiri, P. Laoratanakul, S. Ananta, R. Yimnirun, J. Magn. 14, 120 (2009)

    Article  Google Scholar 

  48. R. Cohen, Nature 358, 136 (1992)

    Article  Google Scholar 

Download references

Acknowledgements

Author (CB) is gratefully acknowledged the grant received from SERB, DST, Govt. of India (PDF/2016/001078 dated 26th July.2016) to carry out the research work and CRF,IIT Kharagpur for SEM and SQUID facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Behera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, C., Choudhary, R.N.P. & Parida, S.K. Lanthanum modified BFO–BT solid solutions: a structural, electrical and magnetic study. J Mater Sci: Mater Electron 30, 4069–4078 (2019). https://doi.org/10.1007/s10854-019-00694-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00694-6

Navigation