Skip to main content
Log in

Green synthesis of superparamagnetic magnetite nanoparticles: effect of natural surfactant and heat treatment on the magnetic properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A facile and eco-friendly synthetic approach was employed to synthesize superparamagnetic magnetite (Fe3O4) nanoparticles with cubic lattice structure. Zucchini and pomegranate peel-extracts were used as natural stabilizer and surfactant. The X-ray diffraction patterns revealed that the green synthetic technique was successful in formation of highly distributed Fe3O4 nanoparticles using both of the above extracts. The infrared (IR) analysis further confirmed the phase formation and the binding of extracts with Fe3O4 nanoparticles. Based on UV–Vis analysis, the samples showed the characteristic of surface plasmon resonance in the presence of Fe3O4 nanoparticles. The as-synthesized samples were heated at 550 °C for 2 h. It was found that the particles however grew, their sizes remained in nanoscale regime, indicating their thermal stability. The VSM analysis indicated that the as-synthesized samples have a saturation magnetization of 21.4 emu/g (using zucchini peel extract) and 13.3 emu/g (using pomegranate peel extract), which increased respectively to 45.8 emu/g and 38.1 emu/g after the heating process. A negligible coercivity in the samples with the particle sizes of less than 10 nm suggests superparamagnetic behavior of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Ali, H. Zafar, M. Zia, I. ul Haq, A. Phull, J. Sarfarz ali, A. Hussain, Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 9, 49–67 (2016)

    Article  CAS  Google Scholar 

  2. J. Qu, Y. Dong, Y. Wang, H. Xing, A novel sensor based on Fe3O4 nanoparticles–multiwalled carbon nanotubes composite film for determination of nitrite. Sens. Bio-Sens. Res. 3(Supplement C), 74–78 (2015)

    Article  Google Scholar 

  3. A. Von Held Soares, H. Atia, U. Armbruster, F. Passos, A. Martin, Platinum, palladium and nickel supported on Fe3O4 as catalysts for glycerol aqueous-phase hydrogenolysis and reforming. Appl. Catal. Gen. 548, 179–190 (2017)

    Article  Google Scholar 

  4. G. Prabha, V. Raj, Sodium alginate-polyvinyl alcohol-bovin serum albumin coated Fe3O4 nanoparticles as anticancer drug delivery vehicle: doxorubicin loading and in vitro release study and cytotoxicity to HepG2 and L02 cells. Mater. Sci. Eng. C Mater. Biol. Appl. 79, 410–422 (2017)

    Article  CAS  Google Scholar 

  5. K.K. Kefeni, T.A.M. Msagati, B.B. Mamba, Ferrite nanoparticles: synthesis, characterisation and applications in electronic device. Mater. Sci. Eng. B 215(Supplement C), 37–55 (2017)

    Article  CAS  Google Scholar 

  6. A. Mahdieh, A.R. Mahdavian, H. Salehi-Mobarakeh, Chemical modification of magnetite nanoparticles and preparation of acrylic-base magnetic nanocomposite particles via miniemulsion polymerization. J. Magn. Magn. Mater. 426(Supplement C), 230–238 (2017)

    Article  CAS  Google Scholar 

  7. A. Hajalilou, S.A. Mazlan, S.T. Shilan, E. Abouzari-Lotf, Enhanced magnetorheology of soft magnetic carbonyl iron suspension with binary mixture of Ni-Zn ferrite and Fe3O4 nanoparticle additive. Colloid Polym. Sci. 295(9), 1499–1510 (2017)

    Article  CAS  Google Scholar 

  8. R.M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses (Wiley, Weinheim, 2006)

    Google Scholar 

  9. O.M. Lemine, K. Omri, B. Zhang, L. El Mir, M. Sajieddine, A. Alyamani, M. Bououdina, Sol–gel synthesis of 8 nm magnetite (Fe3O4) nanoparticles and their magnetic properties. Superlattices Microstruct. 52(4), 793–799 (2012)

    Article  CAS  Google Scholar 

  10. L. Zhu, X. Zeng, X. Li, B. Yang, R. Yu, Hydrothermal synthesis of magnetic Fe3O4/graphene composites with good electromagnetic microwave absorbing performances. J. Magn. Magn. Mater. 426, 114–120 (2017)

    Article  CAS  Google Scholar 

  11. T. Lu, J. Wang, J. Yin, A. Wang, X. Wang, T. Zhang, Surfactant effects on the microstructures of Fe3O4 nanoparticles synthesized by microemulsion method. Colloids Surf. Physicochem. Eng. Asp. 436, 675–683 (2013)

    Article  CAS  Google Scholar 

  12. A. Radoń, A. Drygała, L. Hawelek, D. Lukowiec, Structure and optical properties of Fe3O4 nanoparticles synthesized by co-precipitation method with different organic modifiers. Mater. Charact. 131, 148–156 (2017)

    Article  Google Scholar 

  13. D. Chen, S. Ni, Z. Chen, Synthesis of Fe3O4 nanoparticles by wet milling iron powder in a planetary ball mill. China Particuol. 5(5), 357–358 (2007)

    Article  CAS  Google Scholar 

  14. S. Santra, R. Tapec, N. Theodoropoulou, J. Dobson, A. Hebard, W. Tan, Synthesis and characterization of silica-coated iron oxide nanoparticles in micro emulsion: the effect of nonionic surfactants. Langmuir 17, 2900–2906 (2001)

    Article  CAS  Google Scholar 

  15. S. Dhar, E.M. Reddy, A. Shiras, V. Pokharkar, B.E.E. Prasad, Natural gum reduced/stabilized gold nanoparticles for drug delivery formulations. Chem. Eur. J. 14(33), 10244–10250 (2008)

    Article  CAS  Google Scholar 

  16. A. Hajalilou, A. Kianvash, K. Shameli, H. Lavvafi, Carbonyl iron based magnetorheological effects with silver nanoparticles via green-assisted coating. Appl. Phys. Lett. 110(26), 261902 (2017)

    Article  Google Scholar 

  17. Z. Khodsiani, H. Mansuri, T. Mirian, The effect of cryomilling on the morphology and particle size distribution of the NiCoCrAlYSi powders with and without nano-sized alumina. Powder Technol. 245, 7–12 (2013)

    Article  CAS  Google Scholar 

  18. Y. Cai, Y. Shen, A. Xie, S. Li, X. Wang, Green synthesis of soya bean sprouts-mediated superparamagnetic Fe3O4 nanoparticles. J. Magn. Magn. Mater. 322(19), 2938–2943 (2010)

    Article  CAS  Google Scholar 

  19. W. Lu, Y. Shen, A. Xie, W. Zhang, Green synthesis and characterization of superparamagnetic Fe3O4 nanoparticles. J. Magn. Magn. Mater. 322(13), 1828–1833 (2010)

    Article  CAS  Google Scholar 

  20. A. Demir Korkmaz, R. Topkaya, A. Baykal, Green synthesis of superparamagnetic Fe3O4 nanoparticles with maltose: Its magnetic investigation. Polyhedron 65, 282–287 (2013)

    Article  Google Scholar 

  21. B. Kumar, K. Smita, L. Cumbal, A. Debut, Biogenic synthesis of iron oxide nanoparticles for 2-arylbenzimidazole fabrication. J. Saudi Chem. Soc. 18(4), 364–369 (2014)

    Article  Google Scholar 

  22. M.Y. Khan, A.S. Mangrich, J. Schultz, F.S. Grasel, N. Mattoso, D.H. Mosca, Green chemistry preparation of superparamagnetic nanoparticles containing Fe3O4 cores in biochar. J. Anal. Appl. Pyrolysis 116, 42–48 (2015)

    Article  CAS  Google Scholar 

  23. F. Dumur, A. Guerlin, E. Dumas, D. Bertin, D. Gigmes, C.R. Mayer, Controlled spontaneous generation of gold nanoparticles assisted by dual reducing and capping agents. Gold Bull. 44(2), 119–137 (2011)

    Article  Google Scholar 

  24. A. Hajalilou, M. Hashim, R. Ebrahimi-Kahrizsangi, H. Mohamed, Kamari, N. Sarami, Synthesis and structural characterization of nano-sized nickel ferrite obtained by mechanochemical process. Ceram. Int. 40, 5881–5887 (2014)

    Article  CAS  Google Scholar 

  25. A. Hajalilou, M. Hashim, R. Ebrahimi-Kahizsangi, I. Ismail, N. Sarami, Synthesis of titanium carbide and TiC–SiO2 nanocomposite powder using rutile and Si by mechanically activated sintering. Adv. Powder Technol. 25, 1094–1102 (2014)

    Article  CAS  Google Scholar 

  26. D. Zhang, Processing of advanced materials using high-energy mechanical milling. Prog. Mater. Sci. 49, 537–560 (2004)

    Article  CAS  Google Scholar 

  27. S. Akhtar, T. Ismail, D. Fraternale, P. Sestili, Pomegranate peel and peel extracts: chemistry and food features. Food Chem. 174, 417–425 (2015)

    Article  CAS  Google Scholar 

  28. A.B. Ogholbeyg, A. Kianvash, A. Hajalilou, E. Abouzari-Lotf, A. Zarebkohan, Cytotoxicity characteristics of green assisted-synthesized superparamagnetic maghemite (γ-Fe2O3) nanoparticles. J. Mater. Sci. Mater. Electron, 29(14), 12135–12143. https://doi.org/10.1007/s10854-018-9321-8

    CAS  Google Scholar 

  29. A. Hajalilou, S.A. Mazlan, A review on preparation techniques for synthesis of nanocrystalline soft magnetic ferrites and investigation on the effects of microstructure features on magnetic properties, Appl. Phys. A 122, 680 (2016). https://doi.org/10.1007/s00339-016-0217-2

    Article  CAS  Google Scholar 

  30. E.M.A. Khalil, M. Aouf, Effect of heat treatment on the infrared absorption spectra of strontium-sodium-borosilicate glass. IJEMS 4(4), 155–162 (1997)

    CAS  Google Scholar 

  31. N. Basavegowda, K.B.S. Magar, K. Mishra, Y.R. Lee, Green fabrication of ferromagnetic Fe3O4 nanoparticles and their novel catalytic applications for the synthesis of biologically interesting benzoxazinone and benzthioxazinone derivatives. N. J. Chem. 38(11), 5415–5420 (2014)

    Article  CAS  Google Scholar 

  32. A. Hajalilou, M. Hashim, H. Mohamed Kamari, Structure and magnetic properties of Ni0.64Zn0.36Fe2O4 nanoparticles synthesized by high-energy milling and subsequent heat treatment. J. Mater. Sci. Mater. Electron. 26(3), 1709–1718 (2015)

    Article  CAS  Google Scholar 

  33. A. Hajalilou, M. Hashim, M. Abbasi, H.Mohamed Kamari, H. Azimi, A comparative study on the effects of different milling atmospheres and sintering temperatures on the synthesis and magnetic behavior of spinel single phase Ni0.64Zn0.36Fe2O4 nanocrystals. J. Mater. Sci. Mater. Electron. 26(10), 7468–7483 (2015)

    Article  CAS  Google Scholar 

  34. A. Hajalilou, M. Hashim, R. Ebrahimi-Kahrizsangi, H. Mohamed Kamari, Influence of evolving microstructure on electrical and magnetic characteristics in mechanically synthesized polycrystalline Ni-ferrite nanoparticles. J. Alloys Compd. 633, 306–316 (2015)

    Article  CAS  Google Scholar 

  35. A. Hajalilou, A. Kianvash, H. Lavvafi, S. Kamyar, Nanostructured soft magnetic materials synthesized via mechanical alloying: a review. J. Mater. Sci. Mater. Electron. 29(2), 1690–1717 (2018)

    Article  CAS  Google Scholar 

  36. D. Jiles, Introduction to Magnetism and Magnetic Materials. SERBIULA Sist. Libr. 20, (2017)

  37. A. Hajalilou, M. Hashim, H. Kamari, Influence of CaO and SiO2 co-doping on the magnetic, electrical properties and microstructure of a Ni–Zn ferrite. J. Phys. Appl. Phys. 48, 145001 (2015)

    Article  Google Scholar 

  38. H. Abdollah, M. Hashim, R. Ebrahimi-Kahrizsangi, M.T. Masoudi, Effect of milling atmosphere on structural and magnetic properties of Ni–Zn ferrite nanocrystalline. Chin. Phys. B 24(4), 048102 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Kianvash.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Etemadifar, R., Kianvash, A., Arsalani, N. et al. Green synthesis of superparamagnetic magnetite nanoparticles: effect of natural surfactant and heat treatment on the magnetic properties. J Mater Sci: Mater Electron 29, 17144–17153 (2018). https://doi.org/10.1007/s10854-018-9805-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9805-6

Navigation