Skip to main content
Log in

Fabrication the hybrization of ZnO nanorods–Graphene nanoslices and their electrochemical properties to Levodopa in the presence of uric acid

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, graphene foam and ZnO nanorods were prepared by chemical vapor deposition (CVD) and hydrothermal processes, respectively. The hybrids of graphene nanoslices and ZnO nanorods were then fabricated by ultrasonic process. The as-prepared hybrids were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy. The hybrids possess a slice-like structure with a smooth surface and rod structure, and the lengths of graphene nanoslices are about 3–4 µm. XRD results demonstrated the products are pure without impurities. Raman spectra showed that graphene has a few layers and defect free. The electrical performances of hybrids/ITO electrodes were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The sensitivities of the electrode for LD detection are 0.19 and 0.20 µA µM−1 under the interruption of with UA and without UA. The results show that the electrode has good selectivity, reproducibility and stability which would be potential for use in future clinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W.C. Koller, M.G. Rueda, Mechanism of action of dopaminergic agents in Parkinson’s disease. Neurology 50(6), S11–S14 (1998)

    Article  CAS  Google Scholar 

  2. R. Katzenschlager, A.J. Lees, Treatment of Parkinson’s disease: levodopa as the first choice. J Neurol 249(Suppl 2), ii19–ii24 (2002)

    Google Scholar 

  3. S.P. Khor, A. Hsu, The pharmacokinetics and pharmacodynamics of levodopa in the treatment of Parkinson’s disease. Curr Clin Pharmacol 2(3), 234–243 (2007)

    Article  CAS  Google Scholar 

  4. R.A. Hawkins, A. Mokashi, I.A. Simpson, An active transport system in the blood–brain barrier may reduce levodopa availability. Exp. Neurol. 195(1), 267–271 (2005)

    Article  CAS  Google Scholar 

  5. E.J. Greenhow, L.E. Spencer, Ionic polymerisation as a means of end-point indication in non-aqueous thermometric titrimetry. Part IV. The Determination of catecholamines. Analyst 98(1168), 485–492 (1973)

    Article  CAS  Google Scholar 

  6. J. Coello, S. Maspoch, N. Villegas, Simultaneous kinetic-spectrophotometric determination of levodopa and benserazide by Bi- and three-way partial least squares calibration. Talanta 53(3), 627–637 (2000)

    Article  CAS  Google Scholar 

  7. M. Karimi, J.L. Carl, S. Loftin et al., Modified high-performance liquid chromatography with electrochemical detection method for plasma measurement of levodopa, 3-O-methyldopa, dopamine, carbidopa and 3,4-dihydroxyphenyl acetic acid. J. Chromatogr. B, 836(1–2), 120–123

    Article  CAS  Google Scholar 

  8. J. Wang, Y. Zhou, J. Liang et al., Determination of levodopa and benserazide hydrochloride in pharmaceutical formulations by CZE with amperometric detection. Chromatographia 61(5–6), 265–270 (2005)

    Article  CAS  Google Scholar 

  9. N.F. Atta, A. Galal, S.M. Azab, Electrochemical determination of neurotransmitters using gold nanoparticles on nafion/carbon paste modified electrode. J. Electrochem. Soc. 159(10), H765–H771 (2012)

    Article  CAS  Google Scholar 

  10. E. Molaakbari, A. Mostafavi, H. Beitollahi et al., Synthesis of ZnO nanorods and their application in the construction of a nanostructure-based electrochemical sensor for determination of levodopa in the presence of carbidopa. Analyst 139(17), 4356–4364 (2014)

    Article  CAS  Google Scholar 

  11. C. Sumathi, P. Muthukumaran, S. Radhakrishnan et al., Controlled growth of single-crystalline nanostructured dendrites of α-Fe2O3 blended with MWCNT: a systematic investigation of highly selective determination of L-Dopa. RSC Adv. 4(44), 23050–23057 (2014)

    Article  CAS  Google Scholar 

  12. M.J. Cherukara, K. Sasikumar, W. Cha et al., Ultra-fast three-dimensional X-ray imaging of deformation modes in ZnO nanocrystals. Nano Lett. 17, 1102–1108 (2017)

    Article  CAS  Google Scholar 

  13. N. Lu, H. Guo, W. Hu et al., Effects of line defects on the electronic properties of ZnO nanoribbons and sheets. J. Mater. Chem. C 5(12), 3121–3129 (2017)

    Article  CAS  Google Scholar 

  14. A. Fioravanti, A. Bonanno, M. Mazzocchi et al., Enhanced gas sensing properties of different ZnO 3D hierarchical structures. In Advances in Science and Technology. Trans Tech Publications 99, 48–53 (2017)

    Article  Google Scholar 

  15. P. Sathe, M.T.Z. Myint, S. Dobretsov et al., Removal and regrowth inhibition of microalgae using visible light photocatalysis with ZnO nanorods: a green technology. Sep. Purif. Technol. 162, 61–67 (2016)

    Article  CAS  Google Scholar 

  16. F. Xu, L. Sun, Solution-derived ZnO nanostructures for photoanodes of dye-sensitized solar cells. Energy Environ. Sci. 4(3), 818–841 (2011)

    Article  CAS  Google Scholar 

  17. J. Yi, J.M. Lee, W.I. Park, Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors. Sens. Actuators B 155(1), 264–269 (2011)

    Article  CAS  Google Scholar 

  18. S. Lim, D.S. Um, M. Ha, Q. Zhang, Y. Lee, Y. Lin, H. Ko, Broadband omnidirectional light detection in flexible and hierarchical ZnO/Si heterojunction photodiodes. Nano Res. 10, 22–36 (2017)

    Article  CAS  Google Scholar 

  19. J.E. Jaffe, J.A. Snyder, Z. Lin et al., LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO. Phys. Rev. B 62(3), 1660 (2000)

    Article  CAS  Google Scholar 

  20. A. Shekhawat, R.O. Ritchie, Toughness and strength of nanocrystalline graphene. Nat. Commun. 7, 10546 (2016)

    Article  CAS  Google Scholar 

  21. Y. Zhang, S. Gong, Q. Zhang et al., Graphene-based artificial nacre nanocomposites. Chem. Soc. Rev. 45(9), 2378–2395 (2016)

    Article  CAS  Google Scholar 

  22. Y. Li, J. Wang, X. Tian et al., Carbon doped molybdenum disulfide nanosheets stabilized on graphene for the hydrogen evolution reaction with high electrocatalytic ability. Nanoscale 8(3), 1676–1683 (2016)

    Article  CAS  Google Scholar 

  23. C.S. Boland, S. Barwich, U. Khan et al., High stiffness nano-composite fibres from polyvinylalcohol filled with graphene and boron nitride. Carbon 99, 280–288 (2016)

    Article  CAS  Google Scholar 

  24. Ü Özgür, Y.I. Alivov, C. Liu et al., A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98(4), 11 (2005)

    Article  Google Scholar 

  25. T.Y. Perry, S. Shreyas, C. Manish et al., Design, synthesis, and characterization of graphene–nanoparticle hybrid materials for bioapplications. Chem. Rev. 115(7), 2483–2531 (2015)

    Article  Google Scholar 

  26. D.P. Dubal, H. Rudolf, G. Pedro, Development of hybrid materials based on sponge supported reduced graphene oxide and transition metal hydroxides for hybrid energy storage devices. Sci. Rep. 4(1), 7349–7349 (2015)

    Article  Google Scholar 

  27. F. Wang, K. Zhang, Reduced graphene oxide–TiO2 nanocomposite with high photocatalystic activity for the degradation of rhodamine B. J. Mol. Catal. A 345(1–2), 101–107 (2011)

    Article  CAS  Google Scholar 

  28. H. Wang, Y. Yang, Y. Liang et al., Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 11(7), 2644–2647 (2011)

    Article  CAS  Google Scholar 

  29. M. Shankla, A. Aksimentiev, Modulation of molecular flux using a graphene nanopore capacitor. J. Phys. Chem. B 121, 3724–3733 (2016)

    Article  Google Scholar 

  30. V. Georgakilas, J.N. Tiwari, K.C. Kemp et al., Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev 116(9), 5464–5519 (2016)

    Article  CAS  Google Scholar 

  31. Q. Wang, H. Yue, J. Zhang et al., Electrochemical determination of uric acid in the presence of ascorbic acid by hybrid of ZnO nanorods and graphene nanosheets. Ionics. https://doi.org/10.1007/s11581-017-2379-0 (2017)

    Article  Google Scholar 

  32. C.L. Sun, H.H. Lee, J.M. Yang et al., The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosens. Bioelectron. 26(8), 3450–3455 (2011)

    Article  CAS  Google Scholar 

  33. S. Hou, M.L. Kasner, S. Su et al., Highly sensitive and selective dopamine biosensor fabricated with silanized graphene. J. Phys. Chem. C 114, 14915–14921 (2010)

    Article  CAS  Google Scholar 

  34. A. Afkhami, F. Kafrashi, T. Madrakian, Electrochemical determination of levodopa in the presence of ascorbic acid by polyglycine/ZnO nanoparticles/multi-walled carbon nanotubes-modified carbon paste electrode. Ionics 21(10), 2937–2947 (2015)

    Article  CAS  Google Scholar 

  35. M. Arvand, N.A. Ghodsi, Voltammetric sensor based on graphene-modified electrode for the determination of trace amounts of L-Dopa in mouse brain extract and pharmaceuticals. J. Solid State Electrochem. 17(3), 775–784 (2013)

    Article  CAS  Google Scholar 

  36. M. Arvand, N. Ghodsi, Electrospun TiO2 nanofiber/graphite oxide modified electrode for electrochemical detection of L-Dopa in human cerebrospinal fluid. Sens. Actuators B 204(12), 393–401 (2014)

    Article  CAS  Google Scholar 

  37. P. Kanchana, S. Radhakrishnan, M. Navaneethan et al., Electrochemical sensor based on Fe doped hydroxyapatite-carbon nanotubes composite for L-Dopa detection in the presence of uric acid. J. Nanosci. Nanotechnol. 16, 6185–6192 (2016)

    Article  CAS  Google Scholar 

  38. M.A. Sheikh-Mohseni, S. Pirsa, Nanostructured conducting polymer/copper oxide as a modifier for fabrication of L-Dopa and uric acid electrochemical sensor. Electroanalysis 28, 1–7 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Doctoral Scientific Research Fund of Heilongjiang Institute of Technology (2014BJ14) and the Student innovation and entrepreneurship training program of Heilongjiang Province (201611802114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjiao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wang, Q., Sun, Z. et al. Fabrication the hybrization of ZnO nanorods–Graphene nanoslices and their electrochemical properties to Levodopa in the presence of uric acid. J Mater Sci: Mater Electron 29, 16894–16902 (2018). https://doi.org/10.1007/s10854-018-9784-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9784-7

Navigation