Skip to main content
Log in

Novel nanostructures of bromoaluminum phthalocyanine grown by physical vapor phase transport

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The growth of new nanostructured organic semiconductor materials such as metal phthalocyanines instead of polycrystalline thin films can provide the basis for the development of various revolutionary nanodevices. In this study, we report the growth of new bromo aluminum phthalocyanine (BrAlPc) nanostructures on glass substrates, namely nanorods, nanothistles, and nanocorals, by physical vapor phase transport technique. Their Surface morphology have been investigated using field emission scanning electron microscopy, suggesting the shape and the size of nanostructures is source-substrate distance dependent. Only by varying the source-substrate distance, the perpendicular, and parallel nanorods and evenly distributed nanorods without particular orientation, were observed in the surface. All the nanostructures show two absorption bands in the visible range, namely the Q-band. In addition, analyzing the absorption spectra of the grown nanostructures reveals that the BrAlPc nanothistles is in β-phase while the other nanostructures is mainly in α-phase. Because of the variety of morphologies and the ability to achieve high surface-to-volume ratios, the BrAlPc nanostructures might be of practical value in the opto-electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T.M. Clarke, J.R. Durrant, Charge photogeneration in organic solar cells. Chem. Rev. 110(11), 6736–6767 (2010)

    Article  Google Scholar 

  2. H. Sasabe, J. Kido, Multifunctional materials in high-performance OLEDs: challenges for solid-state lighting. Chem. Mater. 23(3), 621–630 (2010)

    Article  Google Scholar 

  3. D. Braga, G. Horowitz, High-performance organic field-effect transistors. Adv. Mater. 21(14–15), 1473–1486 (2009)

    Article  Google Scholar 

  4. L. Torsi et al., Organic field-effect transistor sensors: a tutorial review. Chem. Soc. Rev. 42(22), 8612–8628 (2013)

    Article  Google Scholar 

  5. P. Yu et al., Novel p–p heterojunctions self-powered broadband photodetectors with ultrafast speed and high responsivity. Adv. Funct. Mater. 27(38), 1703166 (2017)

    Article  Google Scholar 

  6. L. Zheng et al., Scalable-production, self-powered TiO2 nanowell–organic hybrid UV photodetectors with tunable performances. ACS Appl. Mater. Interfaces 8(49), 33924–33932 (2016)

    Article  Google Scholar 

  7. B.H. Lee et al., Flexible organic transistors with controlled nanomorphology. Nano Lett. 16(1), 314–319 (2015)

    Article  Google Scholar 

  8. M. Treier et al., Tailoring low-dimensional organic semiconductor nanostructures. Nano Lett. 9(1), 126–131 (2008)

    Article  Google Scholar 

  9. N. Gao, X. Fang, Synthesis and development of graphene–inorganic semiconductor nanocomposites. Chem. Rev. 115(16), 8294–8343 (2015)

    Article  Google Scholar 

  10. C.-Y. Wang, C.-P. Cho, T.-P. Perng, Structural transformation and crystallization of amorphous copper phthalocyanine nanostructures. Thin Solid Films 518(23), 6720–6728 (2010)

    Article  Google Scholar 

  11. K. Vasseur et al., Controlling the texture and crystallinity of evaporated lead phthalocyanine thin films for near-infrared sensitive solar cells. ACS Appl. Mater. Interfaces 5(17), 8505–8515 (2013)

    Article  Google Scholar 

  12. K. Xiao et al., Metastable copper-phthalocyanine single-crystal nanowires and their use in fabricating high-performance field-effect transistors. Adv. Funct. Mater. 19(23), 3776–3780 (2009)

    Article  Google Scholar 

  13. S. Karan, D. Basak, B. Mallik, Copper phthalocyanine nanoparticles and nanoflowers. Chem. Phys. Lett. 434(4–6), 265–270 (2007)

    Article  Google Scholar 

  14. R. Resel et al., Preferred orientation of copper phthalocyanine thin films evaporated on amorphous substrates. J. Mater. Res. 15(4), 934–939 (2000)

    Article  Google Scholar 

  15. Q. Tang et al., Low threshold voltage transistors based on individual single-crystalline submicrometer-sized ribbons of copper phthalocyanine. Adv. Mater. 18(1), 65–68 (2006)

    Article  Google Scholar 

  16. X. Ji et al., Cobalt phthalocyanine nanowires: growth, crystal structure, and optical properties. Cryst. Res. Technol. 51(2), 154–159 (2016)

    Article  Google Scholar 

  17. W. Wang et al., Experimental and theoretical studies of the structure and optical properties of nickel phthalocyanine nanowires. Mater. Res. Express 3(12), 125002 (2016)

    Article  Google Scholar 

  18. F. Liu et al., Controllable fabrication of copper phthalocyanine nanostructure crystals. Nanotechnology 26(22), 225601 (2015)

    Article  Google Scholar 

  19. F. Wang et al., In situ synthesis of poly (copper phthalocyanine) nanostructures for organic nanodevices. Chem. Lett. 43(7), 1040–1042 (2014)

    Article  Google Scholar 

  20. F. Zhang et al., Boosting the efficiency and the stability of low cost perovskite solar cells by using CuPc nanorods as hole transport material and carbon as counter electrode. Nano Energy 20, 108–116 (2016)

    Article  Google Scholar 

  21. S.M. Yoon et al., Fluorinated copper phthalocyanine nanowires for enhancing interfacial electron transport in organic solar cells. Nano Lett. 12(12), 6315–6321 (2012)

    Article  Google Scholar 

  22. M. Zhang et al., Highly efficient decomposition of organic dye by aqueous-solid phase transfer and in situ photocatalysis using hierarchical copper phthalocyanine hollow spheres. ACS Appl. Mater. Interfaces 3(7), 2573–2578 (2011)

    Article  Google Scholar 

  23. B.N. Mbenkum et al., Selective growth of organic 1-D structures on Au nanoparticle arrays. Nano Lett. 6(12), 2852–2855 (2006)

    Article  Google Scholar 

  24. J. Meiss et al., Fluorinated zinc phthalocyanine as donor for efficient vacuum-deposited organic solar cells. Adv. Funct. Mater. 22(2), 405–414 (2012)

    Article  Google Scholar 

  25. S. Pourteimoor, H. Haratizadeh, Performance of a fabricated nanocomposite-based capacitive gas sensor at room temperature. J. Mater. Sci.: Mater. Electron. 28(24), 18529–18534 (2017)

    Google Scholar 

  26. W. Chen et al., Efficient broad-spectrum parallel tandem organic solar cells based on the highly crystalline chloroaluminum phthalocyanine films as the planar layer. Appl. Phys. Lett. 100(13), 80 (2012)

    Google Scholar 

  27. A. Borras et al., Synthesis of supported single-crystalline organic nanowires by physical vapor deposition. Chem. Mater. 20(24), 7371–7373 (2008)

    Article  Google Scholar 

  28. L. Zhang, X. Fang, C. Ye, Controlled Growth of Nanomaterials (World scientific, Singapore, 2007), pp. 6–8

    Book  Google Scholar 

  29. G. Dhanaraj et al., Springer Handbook of Crystal Growth (Springer, Cham, 2010), pp. 800–801

    Book  Google Scholar 

  30. P. Singh, N. Ravindra, Optical properties of metal phthalocyanines. J. Mater. Sci. 45(15), 4013–4020 (2010)

    Article  Google Scholar 

  31. G. de la Torre et al., in Functional Phthalocyanine Molecular Materials, ed. by J. Jiang. Functional Phthalocyanines: Synthesis, Nanostructuration, and Electro-Optical Applications, (Springer, Berlin, 2010), pp. 1–44

    Google Scholar 

  32. K. Kadish, K. Smith, R. Guilard, The Porphyrin Handbook, Phthalocyanine: Properties and Materials, vol. 17 (Academic Press Inc, Cambridge, 2003), p. 18

    Google Scholar 

  33. H. Isago, Optical Spectra of Phthalocyanines and Related Compounds (Springer, Tokyo, 2015), p. 99

    Book  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Sobhenaz Riyazi at Kharazmi University Solid-State Laboratory for valuable technical assistance and expertise. We are also grateful to Dr. Elham haratian nezhad for carrying out the UV–Visible recordings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salar Pourteimoor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourteimoor, S., Haratizadeh, H., Azim Araghi, M.E. et al. Novel nanostructures of bromoaluminum phthalocyanine grown by physical vapor phase transport. J Mater Sci: Mater Electron 29, 16032–16040 (2018). https://doi.org/10.1007/s10854-018-9691-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9691-y

Navigation