Skip to main content
Log in

One pot synthesis of hybrid ZnS–Graphene nanocomposite with enhanced photocatalytic activities using hydrothermal approach

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, a facile, one pot hydrothermal approach was undertaken to synthesize ZnS/Graphen hybrid nanocomposites. X-ray powder diffraction analysis was carried out to identify the structure and crystalline phase of the prepared sample. Scanning electronic microscopic analysis (SEM) was carried out to observe the surface texture and the Particle shape and size of the developed nanocomposite samples were analyzed using Transmission electronic microscopic analysis (TEM). The elemental composition of the prepared sample was determined using EDS spectrum. The functional groups for pure and ZnS coated Graphene nanocomposites were confirmed using FTIR spectrum. The peak shifts for the individual composite materials were observed using Raman spectroscopic analysis. The optical properties of the samples were examined using UV–Vis reflectance and photoluminescence spectroscopic analysis (PL). The sample showed enhanced photocatalytic performance compared to pure ZnS which is attributed to the reduction of photoinduced electron–hole pair recombination persuaded by incorporation of nanoporous graphene inside the nanocomposite matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Chem. Rev. 95, 69–96 (1995)

    Article  Google Scholar 

  2. Y. Li, J. Chen, C. Zhu, L. Wang, D. Zhao, S. Zhuo, Y. Wu, Spectrochim. Acta A 60, 1719–1724 (2004)

    Article  Google Scholar 

  3. A.L. Linsebigler, G.Q. Lu, J.T. Yates, Chem. Rev. 95, 735–758 (1995)

    Article  Google Scholar 

  4. V. Colvin, M. Schlamp, A.P. Alivisatos, Nature 370, 354–357 (1994)

    Article  Google Scholar 

  5. M. Kanemoto, T. Shiragami, C. Pac, S. Yanagida, J. Phys. Chem. 96, 3521–3526 (1992)

    Article  Google Scholar 

  6. L.E. Brus, Appl. Phys. A 53, 465–474 (1991)

    Article  Google Scholar 

  7. L. Sun, C. Liu, C. Liao, C. Yan, J. Mater. Chem. 9, 1655–1657 (1999)

    Article  Google Scholar 

  8. J. Xu, W. Ji, J. Mater. Sci. Lett. 18, 115–117 (1999)

    Article  Google Scholar 

  9. T. Charinpanitkul, A. Chanagul, J. Dutta, U. Rungsardthong, W. Tanthapanichakoon, Adv. Mater. 6, 266–271 (2005)

    Google Scholar 

  10. W. Liu, Mater. Lett. 60, 551–554 (2006)

    Article  Google Scholar 

  11. M.A. Malik, N. Revaprasadu, Chem. Mater. 13, 913–920 (2001)

    Article  Google Scholar 

  12. S.H. Yu, M. Yoshimura, Adv. Mater. 14, 296–300 (2002)

    Article  Google Scholar 

  13. Y.D. Li, Y. Ding, Y. Zhang, Y.T. Qian, J. Phys. Chem. Solids 60, 13–15 (1999)

    Article  Google Scholar 

  14. A.K. Verma, T.B. Rauchfuss, S.R. Wilson, Inorg. Chem. 34, 3072–3078 (1995)

    Article  Google Scholar 

  15. A. Pich, J. Hain, Y. Lu, V. Boyko, Y. Prots, Macromolecules 38, 6610–6619 (2005)

    Article  Google Scholar 

  16. E.A. Turner, Y.N. Huang, J.F. Corrigan, Eur. J. Inorg. Chem. 22, 4465–4478 (2005)

    Article  Google Scholar 

  17. J. Zhang, M. Xiao, Z. Liu, B. Han, T. Jiang, J. He, G. Yang, J. Colloid Interface Sci. 273, 160–164 (2004)

    Article  Google Scholar 

  18. A. Chatterjee, A. Priyam, S.C. Bhattacharya, A. Saha, Colloids Surf. A 297, 258–266 (2007)

    Article  Google Scholar 

  19. A. Murugadoss, A. Chattopadhyay, Bull. Mater. Sci. 31, 533–539 (2008)

    Article  Google Scholar 

  20. S.D. Miao, Z.M. Liu, B.X. Han, H.W. Yang, Z.J. Miao, Z.Y. Sun, J. Colloid Interface Sci. 301, 116–122 (2006)

    Article  Google Scholar 

  21. S.K. Mehta, S. Kumar, S. Chaudhary, K.K. Bhasin, M. Gradzielski, Nanoscale Res. Lett. 4, 17–28 (2009)

    Article  Google Scholar 

  22. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K. Kohlhaas, E.J. Zimney, E.A. Stach, Nature 442, 282–286 (2006)

    Article  Google Scholar 

  23. S.R.C. Vivekchand, C.S. Rout, K.S. Subrahmanyam, A. Govindaraj, C.N.R. Rao, J. Chem. Sci. 120, 9–13 (2008)

    Article  Google Scholar 

  24. D. Wu, Y. Wang, F. Wang, H. Wang, Y. An, Z. Gao, F. Xu, K. Jiang, Carbon 123:756–766

  25. D. Cunjing Wang, H. Wu, Z. Wang, F. Gao, K. Xu, Jiang, J. Power Sources 363, 375–383 (2017)

    Article  Google Scholar 

  26. C. Wang, D. Wu, H. Wang, Z. Gao, F. Xu, K. Jiang, J. Mater. Chem. A 6, 1244–1254 (2018)

    Article  Google Scholar 

  27. Z. Gao, L. Wang, J. Chang, C. Chen, D. Wu, F. Xu, K. Jiang, J. Power Sources 348, 158–167 (2017)

    Article  Google Scholar 

  28. Z. Gao, X. Liu, X. Liu, D. Wu, F. Xu, L. Zhang, W. Du, K. Jiang, J. Power Sources 337, 25–35 (2017)

    Article  Google Scholar 

  29. J. Chen, Y.L. Cao, D.Z. Jia, Cryst. Eng. Comm. 15, 4747e4754 (2013)

    Google Scholar 

  30. Q. Li, B.D. Guo, J.G. Yu, J.R. Ran, B.H. Zhang, H.J. Yan, J.R. Gong, J. Am. Chem. Soc. 133, 10878e10884 (2011)

    Google Scholar 

  31. D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Nat Nanotechnol 3, 101–105 (2008)

    Article  Google Scholar 

  32. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Carbon 45, 1558–1565 (2007)

    Article  Google Scholar 

  33. J.J. Kang, C.B. Wang, H.D. Wang, B.S. Xu, J.J. Liu, G.L. Li, Appl. Surf. Sci. 258, 1940–1943 (2012)

    Article  Google Scholar 

  34. Y. Lei, F.F. Chen. R. Li, J. Xu, Appl. Surf. Sci. 308, 206–210 (2014)

    Article  Google Scholar 

  35. Q.J. Xue, W.M. Lin, Z.J. Zhang, Wear 213, 29–32 (1997)

    Article  Google Scholar 

  36. A.M. Golsheikh, N.M. Huang, H.N. Lim, C.H. Chia, I. Harrison, M.R. Muhamad, Chem. Eng. J. 218, 276–284 (2013)

    Article  Google Scholar 

  37. C. Nethravathi, T. Nisha, N. Ravishankar, C. Shivakumara, M. Rajamathi, Carbon 47, 2054–2059 (2009)

    Article  Google Scholar 

  38. L.P. Xue, C.F. Shen, M.B. Zheng, H.L. Lu, N.W. Li, G.B. Ji, L.J. Pan, J.M. Cao, Mater. Lett. 65, 198–200 (2011)

    Article  Google Scholar 

  39. N. Zhang, M.Q. Yang, S. Liu, Y. Sun, Y.-J. Xu, Chem. Rev. 115, 10307 (2015)

    Article  Google Scholar 

  40. M.Q. Yang, Y.J. Xu, Phys. Chem. Chem. Phys. 15, 19102–19118 (2013)

    Article  Google Scholar 

  41. J. Zhou, G.H. Tian, Y.J. Chen, X.Y. Meng, Y.H. Shi, X.R. Cao, K. Pan, H.G. Fu, Chem. Commun. 49, 2237–2239 (2013)

    Article  Google Scholar 

  42. K. Denga, J. Zhoub, L. Xiaofang, Electrochim. Acta 95, 18–23 (2013)

    Article  Google Scholar 

  43. N. Zhang, Y. Zhang, Y.J. Xu, Nanoscale 4, 5792–5813 (2012)

    Article  Google Scholar 

  44. X.J. Liu, L.K. Pan, T. Lv, T. Lu, G. Zhu, Z. Sun, C.Q. Sun, Catal. Sci. Technol. 1, 1189–1193 (2011)

    Article  Google Scholar 

  45. R. Ramachandran, S. Felix, G.M. Joshi, B.P.C. Raghupathy, S.K. Jeong, A.N. Grace, Mater. Res. Bull. 48, 3834–3842 (2013)

    Article  Google Scholar 

  46. Y. Li, Y. Liu, W. Shen, Y. Yang, Y. Wen, M. Wang, Mater. Lett. 65, 2518–2521 (2011)

    Article  Google Scholar 

  47. F.A. La Porta, M.M. Ferrer, Y.V.B. de Santana, C.W. Raubach, V.M. Longo, J.R. Sambrano, E. Longo, J. Andrés, M.S. Li, J.A. Varela, J. Alloys Compd. 556, 153–159 (2013)

    Article  Google Scholar 

  48. Y. Zhang, N. Zhang, Z.R. Tang, Y.J. Xu, ACS Nano 6(11), 9777–9789 (2012)

    Article  Google Scholar 

  49. W.G. Becker, A.J. Bard, J. Phys. Chem. 87, 4888–4893 (1983)

    Article  Google Scholar 

  50. J. Chu, X. Li, J.Y. Qi, CrystEngComm 14(201), 1881–1884 (2011)

    Google Scholar 

  51. K. Alamelu Mangai, K. Tamizh Selvi, M. Priya, M. Rathnakumari, P. Sureshkumar, S. Sagadevan, J. Mater. Sci. 28 2910–2922 (2017)

    Google Scholar 

  52. W.M. Xu, D.D. Zhao, S.J. Bao, L.H. Li, J. Solid State Electrochem. 11, 1101–1107 (2007)

    Article  Google Scholar 

  53. J. Zhu, J. He, ACS Appl. Mater. Interfaces 4, 1770–1776 (2012)

    Article  Google Scholar 

  54. Y. Si, E.T. Samulski, Chem. Mater. 20(21), 6792–6797 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This research work has been conducted using RP044C-17 project under AET Cluster of University Malaya, Malaysia under the Project Principal Investigator Dr. Zaira Zaman Chowdhury from University of Malaya, Malaysia and Co-Investigator Dr. Suresh Sagadevan from AMET University, India. Samples are prepared in AMET University, India under MOA act between University of Malaya, Malaysia and AMET University, India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suresh Sagadevan or Zaira Zaman Chowdhury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagadevan, S., Chowdhury, Z.Z., Johan, M.R.B. et al. One pot synthesis of hybrid ZnS–Graphene nanocomposite with enhanced photocatalytic activities using hydrothermal approach. J Mater Sci: Mater Electron 29, 9099–9107 (2018). https://doi.org/10.1007/s10854-018-8937-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8937-z

Navigation