Skip to main content
Log in

The effect of polystyrene sulfonate on the thermoelectric properties of polyaniline/silver nanowires nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polyaniline:polystyrene sulfonate/silver nanowires nanocomposites (PANI:PSS/AgNWs) have been fabricated via incorporating AgNWs into PANI:PSS with simple physical mixing. The water-dispersity, microstructure and thermoelectric properties of the nanocomposites were investigated. The incorporation of PSS improved the water-dispersity of PANI and played an important role in the enhanced thermoelectric performance of the nanocomposites. PSS effectively improved the Seebeck coefficient of the nanocomposites. The maximum power factor of 0.85 µW/mK2 was achieved with the addition of 9.0 wt% AgNWs at a PANI:PSS mass ratio of 1:5, which is 6, 28 and 21 times higher than that of PANI:PSS, PANI and PANI/AgNWs, respectively. Therefore, the incorporation of PSS provided an effective way to improve the thermoelectric properties of conductive polymer composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G.D. Mahan, APL Mater. 4, 104806–104814 (2016)

    Google Scholar 

  2. G.H. Kim, L. Shao, K. Zhang et al., Nat. Mater. 12, 719–723 (2013)

    CAS  Google Scholar 

  3. Z. Fan, D. Du, H. Yao et al., ACS Appl. Mater. Interfaces 9, 11732–11738 (2017)

    CAS  Google Scholar 

  4. B.T. McGrail, A. Sehirlioglu, E. Pentzer, Angew. Chem. Int. Ed. 54, 1710–1723 (2015)

    CAS  Google Scholar 

  5. M. Culebras, C.M. Gómez, A. Cantarero, Materials 7, 6701–6732 (2014)

    Google Scholar 

  6. M. He, F. Qiu, Z. Lin, Energy Environ. Sci. 6, 1352–1361 (2013)

    Google Scholar 

  7. S.N. Patel, M.L. Chabiny, J. Appl. Polym. Sci. https://doi.org/10.1002/app.44403 (2017)

    Article  Google Scholar 

  8. Q. Wang, Q. Yao, J. Chang et al., J. Mater. Chem. 22, 17612–17618 (2012)

    CAS  Google Scholar 

  9. Y. Wang, S.M. Zhang, Y. Deng, J. Mater. Chem. A 4, 3554–3559 (2016)

    CAS  Google Scholar 

  10. L. Wang, Q. Yao, J. Xiao et al., Chem. Asian J. 11, 1955–1962 (2016)

    CAS  Google Scholar 

  11. J. Wang, K.F. Cai, S. Shen, Org. Electron. 17, 151–158 (2015)

    CAS  Google Scholar 

  12. Z. Golsanamlou, M.B. Tagani, H.R. Soleimania, Phys. Chem. Chem. Phys. 17, 13466–13471 (2015)

    CAS  Google Scholar 

  13. Q. Yao, Q. Wang, L. Wang et al., J. Mater. Chem. A 2, 2634–2640 (2014)

    CAS  Google Scholar 

  14. W.F. Yang, H. Xu, Y.Y. Li et al., J. Electron. Mater. 46, 4815–4824 (2017)

    CAS  Google Scholar 

  15. L. Wang, H. Bi, Q. Yao et al., Compos. Sci. Technol. 150, 135–140 (2017)

    CAS  Google Scholar 

  16. M. Mitra, K. Kargupt, S. Ganguly et al., Synth. Met. 228, 25–31 (2017)

    CAS  Google Scholar 

  17. L. Wang, Q. Yao, W. Shi, Mater. Chem. Front. 1, 741–748 (2017)

    CAS  Google Scholar 

  18. F. Roussel, R.C.Y. King, M. Kuriakose et al., Synth. Met. 199, 196–204 (2015)

    CAS  Google Scholar 

  19. W. Wang, S. Sun, S. Gu et al., Rsc Adv. 4, 26810–26816 (2014)

    CAS  Google Scholar 

  20. M. Bharti, A. Singh, S. Samanta et al., Energy Convers. Manage. 144, 143–152 (2017)

    CAS  Google Scholar 

  21. X. Sun, Y. Wei, J. Li et al., Sci. China Mater. 60, 159–166 (2017)

    CAS  Google Scholar 

  22. A. Yoshida, N. Toshima, J. Electron. Mater. 45, 2914–2919 (2016)

    CAS  Google Scholar 

  23. J.Q. Cao, Q. Sun, F.F. Miao et al., Mater. Res. Innovations 18, 540–543 (2014)

    Google Scholar 

  24. L. Li, L. Ferng, Y. Wei et al., J. Colloid Interface Sci. 381, 11–16 (2012)

    CAS  Google Scholar 

  25. C.W. Lee, Y.H. Seo, S.H. Lee, Macromolecules 37, 4070–4074 (2004)

    CAS  Google Scholar 

  26. K. Uh, T. Kim, C.W. Lee et al., Macromol. Mater. Eng. 301, 1320–1326 (2016)

    CAS  Google Scholar 

  27. W.A. Marmisollé, E. Maza, S. Moya, O. Azzaroni, Electrochim. Acta 210, 435–444 (2016)

    Google Scholar 

  28. K.R. Das, M.J. Antony, Polymer 87, 215–225 (2016)

    Google Scholar 

  29. B. Massoumi, M. Shafagh-kalvanagh, M. Jayman, J. Appl. Polym. Sci. https://doi.org/10.1002/app.44720 (2017)

    Article  Google Scholar 

  30. P.J. Kinlen, J. Liu, Y. Ding, C.R. Graham et al., Macromolecules 31, 1735–1744 (1998)

    CAS  Google Scholar 

  31. H.D. Tran, D. Li, R.B. Kaner, Adv. Mater. 21, 1487–1499 (2009)

    CAS  Google Scholar 

  32. Q. Yu, J. Phys. Chem. C 120, 27628–27634 (2016)

    CAS  Google Scholar 

  33. R. Shabanlouei, P.N. Moghadam, N. Movagharnezhad et al., Polym. Sci. Ser. B 58, 574–579 (2016)

    CAS  Google Scholar 

  34. J.C.C. Wu, S. Ray, M. Gizdavic-Nikolaidis et al., Synth. Met. 217, 202–209 (2016)

    CAS  Google Scholar 

  35. J. Luo, S. Jiang, Y. Wu et al., J. Polym. Sci. Part A 50, 4888–4894 (2012)

    CAS  Google Scholar 

  36. C.W. Kuo, T.C. Wen, Eur. Polym. J. 44, 3393–3401 (2008)

    CAS  Google Scholar 

  37. Y.F. Li, Y.P. Wang, X.H. Gao et al., J. Macromol. Sci. Part A A43, 405–415 (2006)

    Google Scholar 

  38. Y.R. Park, J.H. Doh, K. Shin et al., Org. Electron. 19, 131–139 (2015)

    CAS  Google Scholar 

  39. J. Jang, J. Ha, J. Cho, Adv. Mater. 19, 1772–1775 (2007)

    CAS  Google Scholar 

  40. S. Cho, J.S. Lee, J. Jun et al., Nanoscale 6, 15181–15195 (2014)

    CAS  Google Scholar 

  41. Q. Yao, Q. Wang, L. Wang et al., Energy Environ. Sci. 7, 3801–3807 (2014)

    CAS  Google Scholar 

  42. J. Chen, L. Wang, X. Gui et al., Carbon 114, 1–7 (2017)

    CAS  Google Scholar 

  43. Y. Liu, Z.J. Song, Q.H. Zhang et al., RSC Adv. 5, 45106–45112 (2015)

    CAS  Google Scholar 

  44. C. Hu, T. Kawamoto, H. Tanaka et al., J. Mater. Chem. C 4, 10293–10300 (2016)

    CAS  Google Scholar 

  45. Y. Sun, B. Gates, B. Mayers et al., Nano Lett. 2, 165–168 (2002)

    CAS  Google Scholar 

  46. C.A. Amarnath, N. Venkatesan, M. Doble et al., J. Mater. Chem. B 2, 5012–5019 (2014)

    CAS  Google Scholar 

  47. F.P. Du, J.J. Wang, C.Y. Tang et al., Nanotechnology 23, 475704 (2012)

    Google Scholar 

  48. D.S. Patil, S.A. Pawar, J.H. Kim et al., Electrochim. Acta 213, 680–690 (2016)

    CAS  Google Scholar 

  49. S. Kim, B. Kim, S.M. Cho et al., Mater. Lett. 209, 433–436 (2017)

    CAS  Google Scholar 

  50. J. Wu, L. Yin, Appl. Mater. Interfaces 3, 4354–4362 (2011)

    CAS  Google Scholar 

  51. C.A. Amarnatha, J. Kima, K. Kim, Polymer 49, 432–437 (2008)

    Google Scholar 

  52. P. Bober, J. Stejskal, M. Trchová et al., React. Funct. Polym. 70, 656–662 (2010)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51373126), the Scientific Research Fund Project of Wuhan Institute of Technology (K201779), the Undergraduate Innovation and Entrepreneurship Training Program Project of HuBei Provincial (201710490038) and Postgraduate education innovation fund of Wuhan Institute of Technology (CX2016014). The support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Fu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1448 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, FP., Li, QQ., Fu, P. et al. The effect of polystyrene sulfonate on the thermoelectric properties of polyaniline/silver nanowires nanocomposites. J Mater Sci: Mater Electron 29, 8666–8672 (2018). https://doi.org/10.1007/s10854-018-8882-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8882-x

Navigation