Skip to main content
Log in

Structural, microstructural and multiferroic properties of BiFeO3–CoFe2O4 composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

BiFeO3–CoFe2O4 composites were successfully prepared via conventional solid state method. Powder X-ray diffraction confirmed the presence of both perovskite BiFeO3 (BFO) and spinel CoFe2O4 (CFO) phases and rhombohedral structure due to splitting in major peaks in the composites. Further insight into the microstructural and morphological properties of the composites was provided by Raman spectra, Fourier Transform Infrared Spectroscopy and Field Emission Scanning Electron Microscopy along with EDX analysis. Magnetic and electrical response of the composites has been studied exhaustively to comprehend their multiferroic properties. Magnetization study (magnetization vs. magnetic field) confirmed the high saturation magnetization in composites with a low value of coercivity at room temperature. The maximum saturation magnetization (0.3902 emu/g) was achieved in BFO–30%CFO. Ferroelectric polarization (polarization vs. electric field) loop measurements confirmed the low electrical leakage current in the composites. The temperature dependent dielectric response of the composites suggested existence of magnetoelectric coupling between the ferroelectric and ferromagnetic orders in the vicinity of antiferromagnetic–paramagnetic transition temperature of BFO. The decrease in dielectric loss with an increase in CFO content in the composites also validated the similar results as observed in polarization versus electric field measurements. The Impedance Spectroscopy at room temperature revealed the non-Debye behavior and high resistivity of the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. F. Yan, G. Chen, L. Lu, P. Finkel, J. Spanier, Appl. Phys. Lett. 88, 212907 (2013)

    Google Scholar 

  2. M. Fiebig, T. Lottermoser, D. Meier, M. Trassin, Nat. Rev. Mater. 1, 16046 (2016)

    Article  Google Scholar 

  3. Y. Lin, P. Kang, H. Yang, M. Liu, J. Mater. Sci.: Mater. Electron. 26, 1102–1106 (2015)

    Google Scholar 

  4. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759–765 (2006)

    Article  Google Scholar 

  5. M.S. Bernardo, Bol. Soc. Esp. Ceram. Vidr. 53, 1–14 (2014)

    Article  Google Scholar 

  6. L.W. Martin, S.P. Crane, Y.-H. Chu, M.B. Holcomb, M. Huijben, C.-H. Yang, N. Balke, R. Ramesh, J. Phys.: Condens. Matter. 20, 434220 (2008)

    Google Scholar 

  7. A.K. Pradhan, K. Zhang, D. Hunter, J.B. Dadson, G.B. Loutts et al., J. Appl. Phys. 97, 093903 (2005)

    Article  Google Scholar 

  8. X.L. Lu, J.W. Zhang, C.F. Zhang, Y. Hao, RSC Adv. 5, 58640–58643 (2015)

    Article  Google Scholar 

  9. Y. Wang, J. Hu, Y. Lin, C.-W. Nan, NPG Asia Mater. 2, 61–68 (2010)

    Article  Google Scholar 

  10. G. Catalon, J.F. Scott, Adv. Mater. 21, 2463–2485 (2009)

    Article  Google Scholar 

  11. Y. Li, X. Fang, M. Cao, Sci. Rep. 6, 24837 (2016)

    Article  Google Scholar 

  12. Y. Li, W.-Q. Cao, J. Yuan, D. Wang, M.-S. Cao, J. Mater. Chem. C 3, 9276 (2015)

    Article  Google Scholar 

  13. R. Mazumder, P. Sujatha Devi, D. Bhattacharaya, P. Choudhary, A. Sen, M. Raja, Appl. Phys. Lett. 91, 062510 (2007)

    Article  Google Scholar 

  14. S. Goswami, D. Bhattacharaya, C.K. Ghosh, B. Ghosh, S.D. Kaushik, V. Siruguri, P.S.R. Krishna, Sci. Rep. 8, 3728 (2018)

    Article  Google Scholar 

  15. R. Ramesh, N.A. Spaldin, Nat. Mater. 6, 21–29 (2007)

    Article  Google Scholar 

  16. K.G. Yang, Y.L. Zhang, S.H. Yang, B. Wang, J. Appl. Phys. 107, 124109 (2010)

    Article  Google Scholar 

  17. J. Rout, R.N.P. Choudhary, Phys. Lett. A 380, 288–292 (2016)

    Article  Google Scholar 

  18. Y. Li, Z. Wang et al., Nat. Commun. 6, 6680 (2015)

    Article  Google Scholar 

  19. B.P. Jacob, S. Thankachan, S. Xavier, E.M. Mohammed, J. Alloys Compd. 541, 29–35 (2012)

    Article  Google Scholar 

  20. N.B. Velhal, N.D. Patil, A.R. Shelke, N.G. Deshpande, V.R. Puri, AIP Adv. 5, 097166 (2015)

    Article  Google Scholar 

  21. M. Kumar, S. Shankar, O. Parkash, O.P. Thakur, J. Mater. Sci.: Mater. Electron. 25, 888–896 (2014)

    Google Scholar 

  22. C.M. Kanamadi, J.S. Kim, H.K. Yang, B.K. Moon, B.C. Choi, J.H. Jeong, J. Alloys Compd. 481, 781 (2009)

    Article  Google Scholar 

  23. X.-M. Liu, S.-Y. Fu, C.-J. Huang, Mater. Sci. Eng. B 121, 255–260 (2005)

    Article  Google Scholar 

  24. Y. Qu, H. Yang, N. Yang, Y. Fan, H. Zhu, G. Zou, Mater. Lett. 60, 3548–3552 (2006)

    Article  Google Scholar 

  25. Q. Zhu, Y. Xie, J. Zhang, Y. Liu, Q. Zhan, H. Miao, S. Xie, J. Mater. Res. 29, 657–664 (2014)

    Article  Google Scholar 

  26. M. Tyagi, M. Kumari, R. Chatterjee, A.-C. Sun, P. Sharma, IEEE Trans. Magn. 50, 2500704 (2014)

    Article  Google Scholar 

  27. R.K. Mishra, D.K. Pradhan, R.N.P. Chaudhary, A. Banerjee, J. Phys. Condens. Matter 20, 045218 (2008)

    Article  Google Scholar 

  28. Z. Li, Y. Wang, C.-W. Nan, Phys. Rev. B 79, 180406R (2009)

    Article  Google Scholar 

  29. S. Kamba, D. Nuzhnyy, M. Savinov, J. Sebek, J. Petzelt, Phys. Rev. B 75, 024403 (2007)

    Article  Google Scholar 

  30. R. Haumoni, J. Kreisel, P. Bouvier, F. Hippert, Phys. Rev. B 75, 132101 (2006)

    Article  Google Scholar 

  31. N. Adhlakha, K.L. Yadav, R. Singh, J. Mater. Sci. 50, 2073–2084 (2014)

    Article  Google Scholar 

  32. S. Chandarak, M. Unruan, T. Sareein, A. Ngamjarurojana, S. Maensiri, P. Laoratanakul, S. Ananta, R. Yimnirun, J. Magn. 14, 120–123 (2009)

    Article  Google Scholar 

  33. M.M. Kumar, S. Srinath, G.S. Kumar, S.V. Suryanarayana, J. Magn. Magn. Mater. 188, 203–212 (1998)

    Article  Google Scholar 

  34. V.M. Gaikwad, S.A. Acharya, J. Alloys Compd. 755, 168–176 (2018)

    Article  Google Scholar 

  35. Q. Hang, Z. Xing, X. Zhu, M. Yu, Y. Song, J. Zhu, Z. Liu, J. Ceram. Int. 38, S411–S414 (2012)

    Article  Google Scholar 

  36. P. Kumar, M. Kar, J. Alloys Compd. 584, 566–572 (2014)

    Article  Google Scholar 

  37. D.S. Kim, C. Cheon, S.S. Lee, J.S. Kim, Appl. Phys. Lett. 109, 202902 (2016)

    Article  Google Scholar 

  38. B.K. Bammannavar, L.R. Naik, B.K. Chougule, J. Appl. Phys. 104, 064123 (2008)

    Article  Google Scholar 

  39. S. Jabez, S. Mahalakshmi, S. Nithiyanantham, J. Mater. Sci.: Mater. Electron. 28, 5504–5511 (2016)

    Google Scholar 

  40. P. Uniyal, K.L. Yadav, J. Phys.: Condens. Matter. 21, 012205 (2009)

    Google Scholar 

  41. M. Kumar, S. Shankar, R.K. Kotnala, O. Parkash, J. Alloys Compd. 577, 222–227 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to University Science Instrumentation Centre (USIC), University of Delhi, New Delhi and Dr. R. K. Kotnala, National Physical Laboratory (NPL), New Delhi for providing their characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manish Kumar or O. P. Thakur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabas, S., Chaudhary, P., Kumar, M. et al. Structural, microstructural and multiferroic properties of BiFeO3–CoFe2O4 composites. J Mater Sci: Mater Electron 30, 2837–2846 (2019). https://doi.org/10.1007/s10854-018-0560-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0560-5

Navigation