Skip to main content
Log in

Al doped ZnO thin film deposition by thermionic vacuum arc

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnO thin films are widely used in many application areas due to its various properties. The properties of the ZnO thin film strongly depend on the manufacturing method, doping elements and ratio and substrate material. In this paper, ZnO material was doped by Al element. Thermionic vacuum arc is a fast deposition technology for Al doped ZnO thin film manufacturing. TVA is physical vapor deposition technology, using anodic vacuum arc. It works under the high vacuum condition. The thin films were deposited onto amorphous glass, semi-crystal PET and single crystal Si substrate. Structural, morphological and optical properties of the Al doped ZnO thin films are presented. Thin films are in polycrystalline form and have high crystalline quality. According to the XRD analysis, metal oxide phases (ZnO and Al2O3) and bi-metal oxide (ZnAl2O4) phases were detected. It was found that crystallite sizes strongly depend on the substrate. The crystallite size of the thin film deposited on the Si substrate is approximately 100 nm. For the other sample, the value is very small; it is just about 20 nm. Considering the optical results of the samples, all films are transparent in visible region. Band gap and electronic structures of the Al doped ZnO thin films were investigated by optical method, photoluminescence and Raman spectra. The band gaps of the thin films were shifted towards to the high-energy region. Any impurity in deposited thin films cannot detect by the analyses devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V. Srikant, D.R. Clarke, On the optical band gap of zinc oxide. J. Appl. Phys. 83(10), 5447–5451 (1998)

    Article  CAS  Google Scholar 

  2. D.C. Look, Recent advances in ZnO materials and devices. Mater. Sci. Eng. 80(1–3), 383–387 (2001)

    Article  Google Scholar 

  3. A. Mitra, R.K. Thareja, V. Ganesan, A. Gupta, P.K. Sahoo, V.N. Kulkarni, Synthesis and characterization of ZnO thin films for UV laser. Appl. Surf. Sci. 174(3–4), 232–239 (2001)

    Article  CAS  Google Scholar 

  4. R. Pietruszka, B.S. Witkowski, S. Gieraltowska, P. Caban, L. Wachnicki, E. Zielony, K. Gwozdz, P. Bieganski, E. Placzek-Popko, M. Godlewski, New efficient solar cell structures based on zinc oxide nanorods. Sol. Energy Mater. Sol. Cells 143, 99–104 (2015)

    Article  CAS  Google Scholar 

  5. H. Kind, H. Yan, B. Messer, M. Law, P. Yang, Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 14(2), 158–160 (2002)

    Article  CAS  Google Scholar 

  6. A. Tsukazaki, M. Kubota, A. Ohtomo, T. Onuma, K. Ohtani, H. Ohno, M. Kawasaki, Blue light-emitting diode based on ZnO. Jpn. J. Appl. Phys. 44(5L), L643 (2005)

    Article  CAS  Google Scholar 

  7. Y. Natsume, H. Sakata, T. Hirayama, H. Yanagida, Low temperature conductivity of ZnO films prepared by chemical vapor deposition. J. Appl. Phys. 72, 4203 (1992)

    Article  CAS  Google Scholar 

  8. V. Craciun, J. Elders, J.G.E. Gardeniers, I.W. Boyd, Characteristics of high quality ZnO thin films deposited by pulsed laser deposition. Appl. Phys. Lett. 65, 2963 (1994)

    Article  CAS  Google Scholar 

  9. B. Cao, W. Cai, Y. Li, F. Sun, L. Zhang, Ultraviolet-light-emitting ZnO nanosheets prepared by a chemical bath deposition method. Nanotechnology 16, 1734 (2005)

    Article  CAS  Google Scholar 

  10. S. Hwangbo, Y.-J. Lee, K.-S. Hwang, Photoluminescence of ZnO layer on commercial glass substrate prepared by sol-gel process. Ceram. Int. 34, 1237 (2008)

    Article  CAS  Google Scholar 

  11. S. Pat, R. Mohammadigharehbagh, C. Musaoglu, S. Özen, Ş Korkmaz, Investigation of the surface, morphological and optical properties of boron-doped ZnO thin films deposited by thermionic vacuum arc technique. Mater. Res. Express 5(6), 066419 (2018)

    Article  CAS  Google Scholar 

  12. V. Şenay, S. Özen, S. Pat, S. Korkmaz, Some physical properties of a Si-doped nano-crystalline GaAs thin film grown by thermionic vacuum arc, Vaccuum. 119, 228–232 (2015)

    Google Scholar 

  13. Ş. Pat, S. Korkmaz, S. Özen, V. Şenay, Optical, surface and magnetic properties of the Ti-doped GaN nanosheets on glass and PET substrates by thermionic vacuum arc (TVA) method, Part. Sci. Technol. (2018) https://doi.org/10.1080/02726351.2017.1368753

    Article  Google Scholar 

  14. R. Vladoiu, C. Porosnicu, A. Mandes, I. Jepu, V. Dinca, A. Marcu, M. Lungu, G. Prodan, L. Avotina, in Diamond and Carbon Composites and Nanocomposites, ed. by M. Aliofkhazraei, DLC thin films and carbon nanocomposite growth by thermionic vacuum arc (TVA) technology,(InTech, Rijeka, 2016)

    Google Scholar 

  15. R. Ghomri, M.N. Shaikh, M.I. Ahmed, W. Song, W. Cai, M. Bououdina, M. Ghers Pure and (Er, Al) co-doped ZnO nanoparticles: synthesis, characterization, magnetic and photocatalytic properties, J. Mater. Sci. (2018)

  16. P.F.H. Inbaraj, J.J. Prince, Optical and structural properties of Mg doped ZnO thin films by chemical bath deposition method, J. Mater. Sci. 29(2), 935–943 (2018)

    CAS  Google Scholar 

  17. H. Belaid, M. Nouiri, Z.B. Ayadi, K. Djessas, L. El Mir, Fabrication and electrical properties of Si/PS/ZnO: in solar cell deposited by rf-magnetron sputtering based on nanopowder target material J. Mater. Sci. 26(11), 8272–8276 (2015)

    CAS  Google Scholar 

  18. U. Demirkol, S. Pat, R. Mohammadigharehbagh, C. Musaoğlu, M. Özgür, S. Elmas, S. Özen, Ş. Korkmaz, Investigation of the substrate effect for Zr doped ZnO thin film deposition by thermionic vacuum arc technique, J. Mater. Sci. 29(21), 18098–18104 (2018)

    Google Scholar 

  19. G. Musa, H. Ehrich, M. Mausbach, Studies on thermionic cathode anodic vacuum arcs. J. Vacuum Sci. Technol. 12(5), 2887–2895 (1994)

    Article  CAS  Google Scholar 

  20. D. Levy, A. Pavese, A. Sani, V. Pischedda, Structure and compressibility of synthetic ZnAl 2 O 4 (gahnite) under high-pressure conditions, from synchrotron X-ray powder diffraction. Phys. Chem. Miner. 28(9), 612–618 (2001)

    Article  CAS  Google Scholar 

  21. S. Battiston, C. Rigo, E.D.C. Severo, M.A. Mazutti, R.C. Kuhn, A. Gündel, E.L. Foletto, Synthesis of zinc aluminate (ZnAl2O4) spinel and its application as photocatalyst. Mater. Res. 17(3), 734–738 (2014)

    Article  CAS  Google Scholar 

  22. L. Smrcok, M. Halvarsson, V. Langer, S. Ruppi, A new rietveld refinement of kappa-(Al2 O3). Zeitschrift fuer Kristallographie 216, 409–412 (2001)

  23. J. Kim-Zajonz, High pressure single crystal X-ray diffraction study on ruby. Z. Kristallogr. 214, 331–336 (1999)

    CAS  Google Scholar 

  24. K. Lejaeghere, V. Van Speybroeck, G. Van Oost, S. Cottenier, Error estimates for solid-state density-functional theory predictions: an overview by means of the ground-state elemental crystals. Crit. Rev. Solid State Mater. Sci. 39(1), 1–24 (2014)

    Article  CAS  Google Scholar 

  25. K. Kihara, G. Donnay, Anharmonic thermal vibrations in ZnO. Can. Mineral. 23(4), 647–654 (1985)

    CAS  Google Scholar 

  26. H. Ahsbahs, H. Sowa, High pressure X ray investigation of zincite ZnO single crystals using diamond anvils with an improved shape. J. Appl. Crystallogr. 39(2), 169–175 (2006)

    Article  CAS  Google Scholar 

  27. J.L. Hazemann, J.F. Berar, A. Manceau, Rietveld studies of the aluminium-iron substitution in synthetic goethite in Mater. Sci. Forum, 79, pp. 821–826 (1991)

    Article  Google Scholar 

  28. P. Scherrer, Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. Kolloidchemie Ein Lehrbuch (Springer, Berlin, 1912) (pp. 387–409)

    Chapter  Google Scholar 

  29. A. Patterson, The Scherrer formula for x-ray particle size determination. Phys. Rev. 56(10), 978–982 (1939)

    Article  CAS  Google Scholar 

  30. J. Tauc, Optical properties and electronic structure of amorphous Ge and Si, Mater. Res. Bull. 3(1), 37–46 (1968)

    Article  Google Scholar 

  31. M.S. Jang, M.K. Ryu, M.H. Yoon, S.H. Lee, H.K. Kim, A. Onodera, S. Kojima, A study on the Raman spectra of Al-doped and Ga-doped ZnO ceramics. Curr. Appl. Phys. 9(3), 651–657 (2009)

    Article  Google Scholar 

  32. M.F. Cerqueira, T. Viseu, J. Ayres de Campos, A.G. Rolo, T. de Lacerda-Aroso, F. Oliveira, I. Bogdanovic-Radovic, E. Alves, M.I. Vasilevskiy, Raman study of insulating and conductive ZnO:(Al, Mn) thin films. phys. status solidi (A) 212(10), 2345–2354 (2015)

    Article  CAS  Google Scholar 

  33. P. Fang, M. He, Y.L. Xie, M.F. Luo, XRD and raman spectroscopic comparative study on phase transformation of gamma-Al2O3 at high temperature, Guang pu xue yu guang pu fen xi, 26(11), 2039–2042 (2006)

    CAS  Google Scholar 

  34. N. Tong, C.J. Zhu, L.X. Song, C.H. Zhang, G.Q. Zhang, Y.X. Zhang, Characteristics of raman spectra of polyethylene terephthalate, Guang pu xue yu guang pu fen xi, 36(1), 114–118 (2016)

    CAS  Google Scholar 

  35. X.S. Zhao, Y.R. Ge, J. Schroeder, P.D. Persans, Carrier-induced strain effect in Si and GaAs nanocrystals. Appl. Phys. Lett. 65(16), 2033–2035 (1994)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suat Pat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özgür, M., Pat, S., Mohammadigharehbagh, R. et al. Al doped ZnO thin film deposition by thermionic vacuum arc. J Mater Sci: Mater Electron 30, 624–630 (2019). https://doi.org/10.1007/s10854-018-0329-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0329-x

Navigation