Skip to main content
Log in

The effect of Mg(NO3)2 addition on the formation of AlN nanowire by direct nitridation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study AlN nanowire was produced via direct nitridation (DN) method. In order to investigate the effect of nitridation on the formation of nanowire, elemental aluminum powder and ammonium chloride (NH4Cl) mixture was prepared with and without the addition of minor amount (0.5 wt%) of magnesium nitrate (Mg(NO3)2). The experiments were performed in a conventional electric resistance furnace coupled with a horizontal stainless-steel tube. Nitridation was carried out at 800–1000 °C for 2 h in N2 atmosphere. Differential scanning calorimetry and thermal gravimetric analyses were performed to powder mixtures, in order to examine the effect of Mg(NO3)2 addition on the morphology of AlN nanowire. X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM) and Energy-dispersive X-ray spectroscopy (EDS) techniques were also performed to identify to formed phases after the DN method. Using this technique, it was shown that with an addition of Mg(NO3)2 at 950 °C in N2 atmosphere a complete transformation to AlN nanowires was achieved having diameters of 40–45 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P.G. Caceres, H.K. Schmid, J. Am. Ceram. Soc. 77, 977 (1994)

    Article  CAS  Google Scholar 

  2. C. Li, L. Hu, W. Yuan, M. Chen, Mater. Chem. Phys. 47, 273 (1996)

    Article  CAS  Google Scholar 

  3. A. Mills, III-Vs Rev. 19, 25 (2006)

    Google Scholar 

  4. Q. Wu, Z. Hu, X. Wang, Y. Lu, K. Huo, S. Deng, N. Xu, B. Shen, R. Zhang, Y. Chen, J. Mater. Chem. 13, 2024 (2003)

    Article  CAS  Google Scholar 

  5. C. Wu, Q. Yang, C. Huang, D. Wang, P. Yin, T. Li, Y. Xie, J. Solid State Chem. 177, 3522 (2004)

    Article  CAS  Google Scholar 

  6. M. Radwan, M. Bahgat, J. Mater. Process. Technol. 181, 99 (2007)

    Article  CAS  Google Scholar 

  7. R.K. Paul, K.H. Lee, B.T. Lee, H.Y. Song, Mater. Chem. Phys. 112, 562 (2008)

    Article  CAS  Google Scholar 

  8. N. Ramdani, M. Derradji, J. Wang, E. Mokhnache, W. Liu, Y. Liu, W. Dong, J. Therm. Anal. Calorim. 126, 561 (2016)

    Article  CAS  Google Scholar 

  9. P. Rajeshwari, T.K. Dey, J. Therm. Anal. Calorim. 125, 369 (2016)

    Article  CAS  Google Scholar 

  10. G. Selvaduray, L. Sheet, Mater. Sci. Technol. 9, 463 (1993)

    Article  CAS  Google Scholar 

  11. N. Mutlu, N. Canikoglu, A.O. Kurt, in 15th Conference & Exhibition of the European Ceramic Society (ECerS2017), 2017, pp. 81–82

  12. A.O. Kurt, The production method of high technology ceramics’ raw materials in rotary furnace under controlled atmosphere, TR Patent, 2011-G-75852, 21 August 2014

  13. C.H. Li, L.H. Kao, M.J. Chen, Y.F. Wang, C.H. Tsai, J. Alloys Compd. 542, 78 (2012)

    Article  CAS  Google Scholar 

  14. L. Li, X. Hao, N. Yu, D. Cui, X. Xu, M. Jiang, J. Cryst. Growth 258, 268 (2003)

    Article  CAS  Google Scholar 

  15. W.S. Jung, S.K. Ahn, Mater. Lett. 43, 53 (2000)

    Article  CAS  Google Scholar 

  16. S. Iijima, Nature 354, 56 (1991)

    Article  CAS  Google Scholar 

  17. Q. Wu, Z. Hu, X. Wang, Y. Lu, X. Chen, H. Xu, Y. Chen, J. Am. Chem. Soc. 125, 10176 (2003)

    Article  CAS  Google Scholar 

  18. S. Zhao, A.T. Connie, M.H.T. Dastjerdi, X.H. Kong, Q. Wang, M. Djavid, S. Sadaf, X.D. Liu, I. Shih, H. Guo, Z. Mi, Sci. Rep. 5, 1 (2014)

    Google Scholar 

  19. K.T. Kenry, Yong, S.F. Yu, J. Mater. Sci. 47, 5341 (2012)

    Article  CAS  Google Scholar 

  20. M. Mashhadi, F. Mearaji, M. Tamizifar, Int. J. Refract. Met. Hard Mater. 46, 181 (2014)

    Article  CAS  Google Scholar 

  21. M. Radwan, M. Bahgat, A.A. El-Geassy, J. Eur. Ceram. Soc. 26, 2485 (2006)

    Article  CAS  Google Scholar 

  22. H.W. Kim, M.A. Kebede, H.S. Kim, Appl. Surf. Sci. 255, 7221 (2009)

    Article  CAS  Google Scholar 

  23. M. Zheng, Q. Jia, S. Zhu, X. Liu, Ceram. Int. 44, 7267 (2018)

    Article  CAS  Google Scholar 

  24. R.N. Lumley, T.B. Sercombe, G.M. Schaffer, Metall. Mater. Trans. A 30, 457 (1999)

    Article  Google Scholar 

  25. G.B. Schaffer, B.J. Hall, Metall. Mater. Trans. A 33, 3279 (2002)

    Article  Google Scholar 

  26. A. Kimura, M. Shibata, K. Kondoh, Y. Takeda, M. Katayama, T. Kanie, H. Takada, Appl. Phys. Lett. 70, 3615 (1997)

    Article  CAS  Google Scholar 

  27. C.D. Boland, R.L. Hexemer, I.W. Donaldson, D.P. Bishop, Mater. Sci. Eng. A 559, 902 (2013)

    Article  CAS  Google Scholar 

  28. A. Gökçe, F. Findik, A.O. Kurt, Mater. Charact. 62, 730 (2011)

    Article  Google Scholar 

  29. G.B. Schaffer, T.B. Sercombe, R.N. Lumley, Mater. Chem. Phys. 67, 85 (2001)

    Article  CAS  Google Scholar 

  30. S. Angappan, R.A. Jeneafer, A. Visuvasam, L.J. Berchmans, Est. J. Eng. 19, 239 (2013)

    Article  CAS  Google Scholar 

  31. Y. Qiu, L. Gao, J. Eur. Ceram. Soc. 23, 2015 (2003)

    Article  CAS  Google Scholar 

  32. A.D. McLeod, C.M. Gabryel, Metall. Trans. A 23, 1279 (1992)

    Article  Google Scholar 

  33. A. Gökçe, F. Findik, A.O. Kurt, Mater. Des. 46, 524 (2013)

    Article  Google Scholar 

  34. S. Zhao, C. Wang, M. Chen, J. Sun, Carbon N. Y. 47, 331 (2008)

    Article  Google Scholar 

  35. T. Pieczonka, T. Schubert, S. Baunack, B. Kieback, Mater. Sci. Eng. A 478, 251 (2008)

    Article  Google Scholar 

  36. A. Matsumoto, K. Kobayashi, K. Ozaki, T. Nishio, Novel Materials Processing by Advanced Electromagnetic Energy Sources (Elsevier, Amsterdam, 2005), pp. 377–380

    Book  Google Scholar 

  37. Z.Y. Liu, T.B. Sercombe, G.B. Schaffer, Metall. Mater. Trans. A 38, 1351 (2007)

    Article  Google Scholar 

  38. A. Gökçe, F. Findik, A.O. Kurt, Can. Metall. Q. 55, 391 (2016)

    Article  Google Scholar 

  39. L. Yu, Y. Lv, X. Zhang, Y. Zhang, R. Zou, F. Zhang, J. Cryst. Growth 334, 57 (2011)

    Article  CAS  Google Scholar 

  40. H. Hu, Z. Wu, W. Zhang, H. Li, R. Zhuo, D. Yan, J. Wang, P. Yan, J. Alloys Compd. 624, 241 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge The Scientific and Technological Research Council of Turkey for partially financial support provided through the project (Nu. 115M562).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Kurtuldu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurtuldu, F., Gökçe, A. & Kurt, A.O. The effect of Mg(NO3)2 addition on the formation of AlN nanowire by direct nitridation. J Mater Sci: Mater Electron 29, 20688–20694 (2018). https://doi.org/10.1007/s10854-018-0208-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0208-5

Navigation