Skip to main content
Log in

Investigation of dopant effect on the electrochemical performance of 1-D polypyrrole nanofibers based glucose biosensor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Glucose plays an imperative role in human metabolism and any imbalance in glucose concentration can cause chronic disease like diabetes mellitus. With the drastic increase in the number of diabetic patients around the world, demand for point of care testing device for continuous monitoring of blood glucose level has been accelerated. In this respect, electrochemical glucose biosensors play a vital role for measurement of glucose concentration in human blood. In this work, for the first time, we demonstrate a systematic study of the effect of two different types of dopants viz. lithium perchlorate (LiClO4) and para-toluenesulfonic acid (p-TSA) on the performance of polypyrrole (PPy) based enzymatic glucose biosensor. Both the dopants (LiClO4 and p-TSA) were utilized with the aim of improving the charge transfer capability of PPy films. The PPy nanofibers were synthesized over a Platinum coated glass substrate by electrochemical method. The morphological and electrochemical properties of electrosynthesized PPy nanofibers utilizing template-free method have been tailored by dopant variation (LiClO4 and pTSA) during electropolymerization. The as-prepared PPy nanofibers were used as a support matrix for enzyme immobilization. The as-fabricated enzymatic biosensors were later examined for the detection of glucose. Both the morphological and electrochemical properties of PPy electrode have been observed to improve with p-TSA (PPy–pTSA), as compared to LiClO4 (PPy–LiClO4). The as-fabricated PPy–pTSA/GOx based glucose biosensor has exhibited the highest sensitivity of 6.12 mA cm−2 M−1 with a linear range of 0.1–7.5 mM, which is better as compared to PPy-LiClO4/GOx biosensor. Additionally, the as-prepared PPy–pTSA/GOx biosensor has presented noteworthy stability, selectivity, and reproducibility that validates the importance of the dopant effect in electrosynthesized PPy based biosensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Yang, S. Li, W. Yang, J. Mater. Sci.: Mater. Electron. 24, 1382–1388 (2013)

    Google Scholar 

  2. M.S. Alsalhi, J. Alam, L.A. Dass, M. Raja, Int. J. Mol. Sci. 12, 2036–2054 (2011)

    Article  Google Scholar 

  3. M.T. Ramesan, V. Santhi, J. Mater. Sci.: Mater. Electron. 28, 18804–18814 (2017)

    Google Scholar 

  4. A.S. Nasab, M. Behpour, M.R. Nasrabadi, F. Ahmadi, S. Pourmasoud, F. Sedighi, Ultrason. Sonochem. 50, 46–58 (2018)

    Article  Google Scholar 

  5. C.S. Park, C. Lee, O.S. Kwon, Polymers 8, 249–267 (2016)

    Article  Google Scholar 

  6. T. Le, Y. Kim, H. Yoon, Polymers 9, 150–182 (2017)

    Article  Google Scholar 

  7. J. Amani, M. Maleki, A. Khoshroo, A.S. Nasab, M.R. Nasrabadi, Anal. Biochem. 548, 53–59 (2018)

    Article  Google Scholar 

  8. B.K. Shrestha, R. Ahmad, S. Shrestha, C.H. Park, C. Sang, Sci. Rep. 7, 16191–16204 (2017)

    Article  Google Scholar 

  9. M.R. Arcila-Velez, M.E. Roberts, Chem. Mater. 26, 1601–1607 (2014)

    Article  Google Scholar 

  10. J. Feng, Q. Zhang, J. Wang, H. Yang, H. Xu, W. Yan, RSC Adv. 5, 71593–71600 (2015)

    Article  Google Scholar 

  11. L. Yang, M. Li, Y. Zhang, K. Yi, J. Ma, Y. Liu, J. Mater. Sci.: Mater. Electron. 25, 1047–1052 (2014)

    Google Scholar 

  12. M.Z. Çetin, P. Camurlu, RSC Adv. 8, 19724–19731 (2018)

    Article  Google Scholar 

  13. P.M. Nia, W.P. Meng, Y. Alias, J. Electrochem. Soc. 163, B8–B14 (2016)

    Article  Google Scholar 

  14. S. Sadki, P. Schottland, G. Sabouraud, N. Brodie, Chem. Soc. Rev. 29, 283 (2000)

    Article  Google Scholar 

  15. U.P. García, J.G. Ibanez, N. Batina, Int. J. Electrochem. Sci. 6, 5172–5188 (2011)

    Google Scholar 

  16. P.A. Palod, V. Singh, Mater. Sci. Eng. C 55, 420–430 (2015)

    Article  Google Scholar 

  17. J. Zang, C.M. Li, S.J. Bao, X. Cui, Q. Bao, C.Q. Sun, Macromolecules 41, 7053–7057 (2008)

    Article  Google Scholar 

  18. P.A. Palod, V. Singh, Sens. Actuators B 209, 85–93 (2015)

    Article  Google Scholar 

  19. P. Jakhar, M. Shukla, V. Singh, J. Electrochem. Soc. 165, G80–G89 (2018)

    Article  Google Scholar 

  20. N. Su, H.B. Li, S.J. Yuan, S.P. Yi, E.Q. Yin, Express Polym. Lett. 6, 697–705 (2012)

    Article  Google Scholar 

  21. G. Ozyilmaz, A.T. Ozyilmaz, F. Can, Appl. Biochem. Microbiol. 47, 196–205

  22. T.C. Gokoglan, M. Kesik, S. Soylemez, R. Yuksel, H.E. Unalan, L. Toppare, J. Electrochem. Soc. 164, G59–G64 (2017)

    Article  Google Scholar 

  23. G. Xu, S.B. Adeloju, Y. Wu, X. Zhang, Anal. Chim. Acta 755, 100–107 (2012)

    Article  Google Scholar 

  24. P.A. Palod, S.S. Pandey, S. Hayase, V. Singh, Appl. Biochem. Biotechnol. 174, 1059–1072 (2014)

    Article  Google Scholar 

  25. M. Shukla, Pramila, T. Dixit, R. Prakash, I.A. Palani, V. Singh, Appl. Surf. Sci. 422, 798–808 (2017)

    Article  Google Scholar 

  26. Y. Chen, J. Li, X. Zhang, H. Xu, J. Mater. Sci. Mater. Electron. 29, 11020–11029 (2018)

    Article  Google Scholar 

  27. L. Niu, Q. Li, F. Wei, X. Chen, H. Wang, J. Electroanal. Chem. 544, 121–128 (2003)

    Article  Google Scholar 

  28. A. Ramanavicius, A. Finkelsteinas, H. Cesiulis, A. Ramanaviciene, Bioelectrochemistry 79, 11–16 (2010)

    Article  Google Scholar 

  29. S. Goel, N.A. Mazumdar, A. Gupta, Polym. Adv. Technol. 21, 205–210 (2010)

    Article  Google Scholar 

  30. M. Raicopol, A. Prun, C. Damian, L. Pilan, Nanoscale Res. Lett. 8, 316–324 (2013)

    Article  Google Scholar 

  31. Y. Uang, T. Chou, Biosens. Bioelectron. 19, 141–147 (2003)

    Article  Google Scholar 

  32. E.M.I.M. Ekanayake, D.M.G. Preethichandra, K. Kaneto, Biosens. Bioelectron. 23, 107–113 (2007)

    Article  Google Scholar 

  33. V.K. Gupta, N. Atar, M.L. Yola, M. Eryılmaz, H. Torul, U. Tamer, I.H. Boyacı, Z. Üstündag˘. J. Colloid Interface Sci. 406, 231–237 (2013)

    Article  Google Scholar 

  34. M. Shukla, Pramila, I.A. Palani, V. Singh, Mater. Res. Express 5, 055031 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors Pramila is grateful to Sophisticated Instrument Centre, IIT Indore for providing FESEM, Fluorescence and Potentiostat/Galvanostat facilities. Pramila would also like to thank Dr. Mukul Gupta (University Grants Commission Department of Atomic Energy (UGC DAE) Consortium for Scientific Research Indore (M. P.), India) for the usage of the DC magnetron sputtering system. Pramila would like to thank Dr. Parasharam M. Shirage (Associate Professor, Discipline of Metallurgy Engineering and Materials Science IIT Indore) for providing access to Potentiostat/Galvanostat for EIS. Pramila would further like to thank the Ministry of Human Resource and Development (MHRD), India for providing the Teaching Assistantship (TA). Author, V. S. would like to thank the Director of IIT Indore for providing his constant support and encouragement for research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipul Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jakhar, P., Shukla, M. & Singh, V. Investigation of dopant effect on the electrochemical performance of 1-D polypyrrole nanofibers based glucose biosensor. J Mater Sci: Mater Electron 30, 3563–3573 (2019). https://doi.org/10.1007/s10854-018-00634-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-00634-w

Navigation