Skip to main content
Log in

Nanoparticles-assembled ZnFe2O4 mesoporous nanorods for physicochemical and magnetic properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Hierarchically one dimensional (1-D) mesoporous ZnFe2O4 rods with nanoparticles as their building blocks have been synthesized by the solvothermal approach. The influence of annealing temperature on structural, morphological, optical and magnetic properties was intensively investigated. X-ray diffraction was used to ascertain the phase purity of synthesized samples. To perceive the information on morphological and structural features, field emission scanning electron microscopy and high resolution transmission electron microscopy with energy dispersive spectroscopy was probed. It was observed that nanorods with high aspect ratio were obtained when treated at 600 °C (ZF600) annealing temperature as compared to 400 °C (ZF400). Fourier transform infra-red spectroscopy was resorted to gain the insight of bonding mechanism associated with ZF400 and ZF600. To enrich the study on material chemistry and defects, Raman spectroscopy and X-ray photoelectron spectroscopy was performed. Brunauer–Emmett–Teller envisioned the surface area of ZF400 and ZF600. It was found that surface area decreases with increase in annealing temperature. UV–Vis spectroscopy expounds that the optical band gap increases with annealing temperature from 3.0 to 3.3 eV for ZF400 to ZF600 respectively. Magnetic measurements were performed on vibrating sample magnetometer at room temperature and the results decipher the superparamagnetic nature of the synthesized material. Additionally, saturation magnetization was found to increase with annealing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Cong, S. Yu, Cryst. Growth Des. 9, 210 (2009)

    Article  Google Scholar 

  2. Sapna, N. Budhiraja, V. Kumar, S.K. Singh, Ceram. Int. 44, 13806 (2018)

    Article  Google Scholar 

  3. N. Budhiraja, Sapna, M. Tomar, V. Gupta, S.K. Singh, AIP Conf. Proc. (2018). https://doi.org/10.1063/1.5029062

    Google Scholar 

  4. P. Liu, Y. Huang, R.S.C. Adv. (2013). https://doi.org/10.1039/C3RA43073A

    Google Scholar 

  5. Y. Li, T. Wu, K. Jiang, G. Tong, K. Jin et al., J. Mater. Chem. C, (2016). https://doi.org/10.1039/C6TC01900E

    Google Scholar 

  6. S. Ozturk, N. Kilinc, I. Torun et al., Int. J. Hydrog. Energy 39, 5194 (2014)

    Article  Google Scholar 

  7. X. Zhou, X. Li, H. Sun, P. Sun, X. Liang, F. Liu et al., Appl. Mater. Interfaces (2015). https://doi.org/10.1021/acsami.5b03537

    Google Scholar 

  8. S. Thirumalairajan, K. Girija, V. Mastelaro, N. Ponpandian, New J. Chem. (2014). https://doi.org/10.1039/C4NJ01029A

    Google Scholar 

  9. C. Singh, A. Goyal, S. Singhal, Nanoscale (2014). https://doi.org/10.1039/c4nr01730g

    Google Scholar 

  10. O. Kubo, E. Ogawa, J. Magn. Magn. Mater. 134, 376 (2019)

    Article  Google Scholar 

  11. I. Sharifi, H. Shokrollahi, S. Amiri, J. Magn. Magn. Mater. 324, 903 (2012)

    Article  Google Scholar 

  12. R. Ji, C. Cao, Z. Chen, H. Zhai, J. Bai, J. Mater. Chem. C (2014). https://doi.org/10.1039/c4tc00167b

    Google Scholar 

  13. J. Li, Z. Liu, Z. Zhu, RSC Adv. 4, 51302 (2014)

    Article  Google Scholar 

  14. X. Huang, J. Zhang, S. Xiao, G. Chen, J. Am. Ceram. Soc. 1366, 1363 (2014)

    Article  Google Scholar 

  15. S. Giri, D. Ghosh, A. Kharitonov, C. Das, Funct. Mater. Lett. 5, 1 (2012)

    Article  Google Scholar 

  16. H.M. Fan, J.B. Yi, Y. Yang, K.W. Kho, H.R. Tan et al., ACS Nano 3, 2798 (2009)

    Article  Google Scholar 

  17. Z.P. Chen, W.Q. Fang, B. Zhang, H.G. Yang, J. Alloys Compd. 550, 348 (2013)

    Article  Google Scholar 

  18. M. Nidhin, S.S. Nazeer, R.S. Jayasree, M.S. Kiran, B.U. Nair et al., RSC Adv. 3, 6906 (2013)

    Article  Google Scholar 

  19. P. Hugounenq, M. Levy, D. Alloyeau, L. Lartigue, E. Dubois et al., J. Phys. Chem. C 116, 15702 (2012)

    Article  Google Scholar 

  20. L. Hao, Y. Zhao, Q. Jiao, P. Chen, RSC Adv. 4, 15650 (2014)

    Article  Google Scholar 

  21. M.M. Rahman, S.B. Khan, M. Faisal, A.M. Asiri, K.A. Alamry, Sensors Actuators B. Chem. 171–172, 932 (2012)

    Article  Google Scholar 

  22. S. Bai, S. Chen, L. Chen, K. Zhang, R. Luo, D. Li et al., Sensors Actuators B. Chem. 174, 51 (2012)

    Article  Google Scholar 

  23. W. Chen, Q. Liu, X. Zhu, M. Fu, Appl. Organometal Chem. (2017) https://doi.org/10.1002/aoc.4017

    Google Scholar 

  24. C. Deng, S. Zhang, Y. Wu, Nanoscale (2014). https://doi.org/10.1039/b000000x

    Google Scholar 

  25. M. Rivero, A.D. Campo, A. Mayrol, E. Mazario et al., RSC Adv. (2016). https://doi.org/10.1039/C6RA04145K

    Google Scholar 

  26. N. Kumari, V. Kumar, S.K. Singh, J. Alloys Compd. 622, 628 (2015)

    Article  Google Scholar 

  27. Z. Jia, D. Ren, Y. Liang, R. Zhu, Mater. Lett. 65, 3116 (2011)

    Article  Google Scholar 

  28. A. Singh, A. Singh, S. Singh, P. Tandon, B.C. Yadav, R.R. Yadav, J. Alloys Compd. 618, 475 (2015)

    Article  Google Scholar 

  29. X.B. Zhong, Z.Z. Yang, H.Y. Wang, L. Lu, B. Jin, M. Zha et al., J. Power Sources. 306, 718 (2016)

    Article  Google Scholar 

  30. X. Li, B. Zhang, C. Ju, X. Han, Y. Du, P. Xu, J. Phys. Chem. C. 115, 12350 (2011)

    Article  Google Scholar 

  31. B.L. Zhong, J. Hu, H. Liang, A. Cao, W. Song, L. Wan, Adv. Mater. 18, 2426 (2006)

    Article  Google Scholar 

  32. C. Burda, X. Chen, R. Narayanan, M.A. El-sayed, Chem. Rev. 105, 1025 (2005)

    Article  Google Scholar 

  33. R.L. Penn, J. Phys. Chem. B 108, 12707 (2004)

    Article  Google Scholar 

  34. J. Park, V. Privman, E. Matijevic, J. Phys. Chem. B 105, 11630 (2001)

    Article  Google Scholar 

  35. R. Liu, Y. Zhao, R. Huang, Y. Zhao, H. Zhou, Eur. J. Inorg. Chem. (2010). https://doi.org/10.1002/ejic.201000430

    Google Scholar 

  36. X. Xie, P. Shang, Z. Liu, Y. Lv, Y. Li, W. Shen, J. Phys. Chem. C 114, 2116 (2010)

    Article  Google Scholar 

  37. S. Zeng, K. Tang, T. Li, Z. Liang, D. Wang, Y. Wang et al., J. Phys. Chem. C 111, 10217 (2007)

    Article  Google Scholar 

  38. B.D. Cullity, Elements of X-ray diffraction (Addision-Wesley, Boston, 1978)

    Google Scholar 

  39. Sapna, N. Budhiraja, V. Kumar, S.K. Singh, J. Adv. Phys. 6, 1 (2017)

    Article  Google Scholar 

  40. N. Wang, H. Xu, L. Chen, X. Gu, J. Yang, Y. Qian, J. Power Sources 247, 163 (2014)

    Article  Google Scholar 

  41. O.M. Lemine, M. Bououdina, M. Sajieddine, A.M. Al-saie, M. Shafi, Phys. B Condens. Matter. 406, 1989 (2011)

    Article  Google Scholar 

  42. R. Tholkappiyan, F. Hamed, K. Vishista, Adv. Mater. Lett. 7, 971 (2016)

    Article  Google Scholar 

  43. H. Zhu, M. Fang, Z. Huang, Y. Liu, K. Chen, C. Tang et al., RSC Adv.(2016). https://doi.org/10.1039/C6RA05098K

    Google Scholar 

  44. Z. Wang, D. Schiferl, Y. Zhao, H.S.C.O. Neill, J. Phys. Chem. Solids 64, 2517 (2003)

    Article  Google Scholar 

  45. M.V. Olmo, A.D. Cabello, A.A. Chacon, J.S. Benitez, E.U. Garrote et al., Phys. Chem. Chem. Phys. (2017). https://doi.org/10.1039/C6CP08743D

    Google Scholar 

  46. H.C. Choi, Y.M. Jung, S.Bin Kim, Vib. Spectrosc. 37, 33 (2005)

    Article  Google Scholar 

  47. J.P. Singh, R.C. Srivastava, H.M. Agrawal, R. Kumar, J. Raman Spectrosc (2011). https://doi.org/10.1002/jrs.2902

    Google Scholar 

  48. L. Li, H. Bi, S. Gai, F. He, P. Gao, Y. Dai et al., Sci. Rep. (2017). https://doi.org/10.1038/srep43116

    Google Scholar 

  49. J. Kim, Y.J. Jang, J.H. Kim, J.W. Jang, S.H. Choi et al., Nanoscale, (2015). https://doi.org/10.1039/C5NR05812K

    Google Scholar 

  50. M. Chkraborty, R. Thangavel, A. Biswas, G. Udayabhanu, CrystEngComm, (2016). https://doi.org/10.1039/C5CE02553B

    Google Scholar 

  51. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, et. al. Pure Appl. Chem. 57, 603 (1985)

    Article  Google Scholar 

  52. P.R. Matli, X. Zhou, D. Shiyu, Q. Huang, Int. Nano Lett. 5, 53 (2015)

    Article  Google Scholar 

  53. M. Zhu, X. Zhang, Y. Zhou, C. Zhuo, J. Huang, S. Li, RSC Adv., (2015). https://doi.org/10.1039/C5RA00447K

    Google Scholar 

  54. D. Bresser, E. Paillard, R. Kloepsch, S. Krueger, M. Fiedler, R. Schmitz et al., Adv. Energy Mater. 3, 513 (2013)

    Article  Google Scholar 

  55. M.M. Vadiyar, S.C. Bhise, S.S. Kolekar, J.Y. Chang, K.S. Ghule et al., J. Mater. Chem. A (2016). https://doi.org/10.1039/C6TA01893A

    Google Scholar 

  56. Sapna, N. Budhiraja, V. Kumar, S.K. Singh, J.Supercond. Nov. Magn. (2017). https://doi.org/10.1007/s10948-4529-z

    Google Scholar 

  57. C. Yao, Q. Zeng, G.F. Goya, T. Torres, J. Liu, H. Wu et al., J. Phys. Chem. C 111, 12274 (2007)

    Article  Google Scholar 

  58. M. Wang, Z. Ai, L. Zhang, J. Phys. Chem. C 112, 13163 (2008)

    Article  Google Scholar 

  59. H. Huili, B. Grindi, A. Kouki, G. Viau, L. Ben Tahar, Ceram. Int. (2015). https://doi.org/10.1016/j.ceramint.2015.01.024

    Google Scholar 

  60. S. Bullita, A. Casu, M.F. Casula, G. Concas, F. Conjiu et al., Phy. Chem. Chem. Phy. (2014). https://doi.org/10.1039/c3cp54291b

    Google Scholar 

  61. H. Huili, B. Grindi, G. Viau, L.B. Tahar, Ceram. Int. 40, 16235 (2014)

    Article  Google Scholar 

  62. Sapna, N. Budhiraja, V. Kumar, S.K. Singh, Ceram. Int. (2018) https://doi.org/10.1016/j.ceramint.2018.09.286

    Google Scholar 

  63. D.S. Nikam, S.V. Jadhav, V.M. Khot, R.A. Bohara, C.K. Hong et al., RSC Adv. 5, 2338 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

Authors, Sapna and Narender Budhiraja are grateful to the Department of Science and Technology (DST), Govt. Of Haryana for their financial supports SRF under RETC project (HSCST/446) at Department of Physics, DCR University of Science and Technology, Murthal, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sapna, Budhiraja, N., Kumar, V. et al. Nanoparticles-assembled ZnFe2O4 mesoporous nanorods for physicochemical and magnetic properties. J Mater Sci: Mater Electron 30, 3078–3087 (2019). https://doi.org/10.1007/s10854-018-00587-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-00587-0

Navigation