Skip to main content

Advertisement

Log in

Highly sensitive hydrogen sensor based on nickel incorporated TiO2 nanostructures operating at room temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We demonstrate the effect of nickel doping on the sensing performance of TiO2 nanospheres towards hydrogen at room temperature. A novel microwave assisted processing was adopted for the synthesis of Ni:TiO2 nanospheres. The preferential (101) anatase phase of TiO2 changed to anatase–rutile mixed phase after Ni doping. The vibrational spectra show significant shift in the peak with catalytic Ni addition. The energy gap of TiO2 increased with Ni incorporation from 3.28 to 3.35 eV due to size confinement. Photoluminescence analysis confirmed the decreased intrinsic defect density in Ni doped TiO2 nanostructures. The morphology of Ni:TiO2 demonstrated nanospherical shaped grains with increased porosity favorable for sensing. The resistance of Ni:TiO2 sensors fabricated with a multi-terminal network H2 adsorption layer improved dramatically to 1100 MΩ, compared to 600 MΩ recorded for pristine TiO2. The nanocomposite sensor showed fast recovery of 40 s, to even a low concentration of 100 ppm H2 at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Moon, H.P. Hedman, M. Kemell, A. Tuominen, R. Punkkinen, Hydrogen sensor of Pd-decorated tubular TiO2 layer prepared by anodization with patterned electrodes on SiO2/Si substrate. Sens. Actuators B 222, 190–197 (2016)

    CAS  Google Scholar 

  2. Z.W. Low, P.L. Chee, D. Kai, X.J. Loh, The role of hydrogen bonding in alginate/poly(acrylamide-co-dimethylacrylamide) and alginate/poly(ethylene glycol) methyl ether methacrylate-based tough hybrid hydrogels. RSC Adv. 5, 57678 (2015)

    CAS  Google Scholar 

  3. I.A. Al-Homoudi, J.S. Thakur, R. Naik, G.W. Auner, G. Newaz, Anatase TiO2 films based CO gas sensor: film thickness, substrate and temperature effects. Appl. Surf. Sci. 253, 8607–8614 (2007)

    CAS  Google Scholar 

  4. K.D. Benkstein, S. Semancik, Mesoporous nanoparticle TiO2 thin films for conductometric gas sensing on micro hotplate platforms. Sens. Actuators B 113, 445–453 (2006)

    CAS  Google Scholar 

  5. L.L.W. Chow, M.M.F. Yuen, P.C.H. Chan, A.T. Cheung, Reactive sputtered TiO2 thin film humidity sensor with negative substrate bias. Sens. Actuators B 76, 310–315 (2001)

    CAS  Google Scholar 

  6. D.S. Dhawale, R.R. Salunkhe, V.J. Fulari, M.C. Rath, S.N. Sawant, C.D. Lokhande, Liquefied petroleum gas (LPG) sensing performance of electron beam irradiated chemically deposited TiO2 thin films. Sens. Actuators B 141, 58–64 (2009)

    CAS  Google Scholar 

  7. Y.-F. Sun, S.-B. Liu, F.-L. Meng, J.-Y. Liu, Z. Jin, L.-T. Kong, J.-H. Liu, Metal oxide nanostructures and their gas sensing properties. Sensors 12, 2610–2631 (2012)

    CAS  Google Scholar 

  8. E. Comini, Metal oxide nano-crystals for gas sensing. Anal. Chim. Acta 568, 28–40 (2006)

    CAS  Google Scholar 

  9. H.R. Naderi, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M.R. Ganjali, Decoration of nitrogen-doped reduced graphene oxide with cobalt tungstate nanoparticles for use in high-performance supercapacitors. Appl. Surf. Sci. 423, 1025–1034 (2017)

    CAS  Google Scholar 

  10. S.S. Hosseinpour-Mashkani, A. Sobhani-Nasab, Investigation the effect of temperature and polymeric capping agents on the size and photocatalytic properties of NdVO4 nanoparticles. J. Mater. Sci.: Mater. Electron. 28, 16459–16466 (2017)

    CAS  Google Scholar 

  11. A. Sobhani-Nasab, H. Naderi, M. Rahimi-Nasrabadi, M.R. Ganjal, Evaluation of supercapacitive behavior of samarium tungstate nanoparticles synthesized via sonochemical method. J. Mater. Sci.: Mater. Electron. 28, 8588–8595 (2017)

    CAS  Google Scholar 

  12. K. Anand, O. Singh, M.P. Singh, J. Kaur, R.C. Singh, Hydrogen sensor based on graphene/ZnO nanocomposite. Sens. Actuators B 195, 409–415 (2014)

    CAS  Google Scholar 

  13. D. Sett, D. Basak, Highly enhanced H2 gas sensing characteristics of Co:ZnO nanorods and its mechanism. Sens. Actuators B 243, 475–483 (2017)

    CAS  Google Scholar 

  14. Z.Q. Zheng, L.F. Zhu, B. Wang, In2O3 nanotower hydrogen gas sensors based on both schottky junction and thermoelectronic emission. Nanoscale Res. Lett. 10, 293 (2015)

    Google Scholar 

  15. S.S. Kalanur, I.H. Yoo, Y.A. Lee, H. Seo, Green deposition of Pd nanoparticles on WO3 for optical, electronic and gasochromic hydrogen sensing applications. Sens. Actuators B 221, 411–417 (2015)

    CAS  Google Scholar 

  16. T. Li, W. Zeng, D.F. Shi, S. Hussain, UV-enhanced hydrogen sensor based on nanocone-assembled 3D SnO2 at low temperature. Mater. Lett. 161, 648–651 (2015)

    CAS  Google Scholar 

  17. S. Nakagomi, T. Sai, Y. Kokubun, Hydrogen gas sensor with self-temperature compensation based on β-Ga2O3 thin film. Sens. Actuators B 187, 413–419 (2013)

    CAS  Google Scholar 

  18. B. Roy, P.A. Fuierer, Influence of sodium chloride and dibasic sodium phosphate salt matrices on the anatase-rutile phase transformation and particle size of titanium dioxide powder. J. Am. Ceram. Soc. 93(2), 436–444 (2010)

    CAS  Google Scholar 

  19. Y.X. Zhang, G.H. Li, Y.X. Jin, Y. Zhang, J. Zhang, L.D. Zhang, Hydrothermal synthesis and photoluminescence of TiO2 nanowires. Chem. Phys. Lett. 365(3–4), 300–304 (2002)

    CAS  Google Scholar 

  20. B. Roy, S.P. Ahrenkiel, P.A. Fuierer, Controlling the size and morphology of TiO2 powder by molten and solid salt synthesis. J. Am. Ceram. Soc. 91(8), 2455–2463 (2008)

    CAS  Google Scholar 

  21. C.L. Luu, Q.T. Nguyen, S.T. Ho, Synthesis and characterization of Fe-doped TiO2 photocatalyst by the sol–gel method. Adv. Nat. Sci.: Nanosci. Nanotechnol. 1–5 (2010)

  22. N.G. Cho, I.S. Hwang, H.G. Kim, J.H. Lee, I.D. Kim, Gas sensing properties of p-type hollow NiO hemispheres prepared by polymeric colloidal templating method. Sens. Actuators B 155, 366–371 (2011)

    CAS  Google Scholar 

  23. J. Wang, P. Yang, X. Wei, Z. Zhou, Preparation of NiO two-dimensional grainy films and their high-performance gas sensors for ammonia detection. Nanoscale Res. Lett. 10, 119 (2015)

    Google Scholar 

  24. Z. Miao et al., Electrochemically induced sol–gel preparation of single-crystalline TiO2 Nanowire. Nano Lett. 2, 717–720 (2002)

    CAS  Google Scholar 

  25. H.G. Yang et al., Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets. J. Am. Chem. Soc. 131, 4078–4083 (2009)

    CAS  Google Scholar 

  26. D. Sun, J. Yang, X. Wang, Bacterial cellulose/TiO2 hybrid nanofibers prepared by the surface hydrolysis method with molecular precision. Nanoscale 2, 287–292 (2010)

    CAS  Google Scholar 

  27. X. Zhu, X.J. Loh, Layer-by-layer assemblies for antibacterial applications. Biomater. Sci. 3, 1505 (2015)

    CAS  Google Scholar 

  28. K. Vijayalakshmi, V. Vasanthi Pillay, Influence of deposition time on the microstructure and dielectric properties of AlN/Si thin films for enhanced hydrogen sensing application. Microelectron. Eng. 113, 29–34 (2014)

    CAS  Google Scholar 

  29. M.H. Jung, M.J. Chu, M.G. Kang, TiO2 nanotube fabrication with highly exposed (001) facets for enhanced conversion efficiency of solar cells. Chem. Commun. 48, 5016–5018 (2012)

    CAS  Google Scholar 

  30. G. Li, X. Zhu, X. Tang, W. Song, Z. Yang, J. Dai, Y. Sun, X. Pan, S. Dai, J. Alloy. Compd. 509, 4816–4823 (2011)

    CAS  Google Scholar 

  31. C. Cumus, O.M. Ozkendir, H. Kavak, Y. Ufuktepe, J. Optoelectron. Adv. Mater. 8, 299–303 (2006)

    Google Scholar 

  32. K. Vijayalakshmi, S.D. Jereil, Influence of Fe catalytic doping on the properties of TiO2 nanoparticles synthesized by microwave method. J. Mater. Sci.: Mater. Electron. 25, 5089–5094 (2014)

    CAS  Google Scholar 

  33. A.C. Manna,. N. Cioffi, M. Rai, Synthesis, Characterization, and Antimicrobial Activity of Zinc Oxide Nanoparticles, in Nano-antimicrobials (Springer, Berlin, 2012), pp. 151–180

    Google Scholar 

  34. T. Ikeda, T. Nomoto, K. Eda, Y. Mizutani, H. Kato, A. Kudo, H. Onishi, Photoinduced dynamics of TiO2 doped with Cr and Sb. J. Phys. Chem. C 112, 1167–1173 (2008)

    CAS  Google Scholar 

  35. A. Maurya, P. Chauhan, S.K. Mishra, R.K. Srivastava, Structural, optical and charge transport study of rutile TiO2 nanocrystals at two calcination temperatures. J. Alloy. Compd. 509, 8433–8440 (2011)

    CAS  Google Scholar 

  36. K. Witke, K.W. Brzezinka, P. Reich, Structural characterization of thin films formed or changed on materials by micro Raman spectroscopy. Fresen. J. Anal. Chem. 361, 619–620 (1998)

    CAS  Google Scholar 

  37. G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram Die verbreiterung der roentgeninterferenzlinien von aluminium- und wolframspaenen. Acta Metall. 1, 22–31 (1953)

    CAS  Google Scholar 

  38. R.R. Prabhu, M. Abdul Khadar, Study of optical phonon modes of CdS nanoparticles using Raman spectroscopy. Bull. Mater. Sci. 31, 511–515 (2008)

    CAS  Google Scholar 

  39. S. Kumara, N. Verma, M. Singla, Reflective characteristics of Ni doped ZnS nanoparticle-pigment and their coatings. Chalcogenide Lett. 8, 561–569 (2011)

    Google Scholar 

  40. S.M. Prokes, J.L. Gole, X. Chen, C. Burda, W.E. Carlos, Defect-related optical behavior in surface-modified TiO2 nanostructures. Adv. Funct. Mater. 15, 161–167 (2005)

    CAS  Google Scholar 

  41. V.N. Kuznetsov, N. Serpone, Visible light absorption by various titanium dioxide specimens. J. Phys. Chem. B 110, 25203–25209 (2006)

    CAS  Google Scholar 

  42. H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, K. Ikeue, M. Anpo, Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts. J. Photochem. Photobiol. A 148, 257–261 (2002)

    CAS  Google Scholar 

  43. D.C. Onwudiwe, P.A. Ajibade, ZnS, CdS and HgS nanoparticles via alkyl-phenyl dithiocarbamate complexes as single source precursors. Int. J. Mol. Sci. 12, 5538–5551 (2011)

    CAS  Google Scholar 

  44. A. Bol, J. Ferwerda, J. Bergwerff, A. Meijerink, Luminescence of nanocrystalline ZnS:Cu2+. J. Lumin. 99, 325–334 (2002)

    CAS  Google Scholar 

  45. A. Tiwari, S. Khan, R. Kher, Surface characterization and optical properties of polyphosphate capped ZnS nanoparticles. Adv. Appl. Sci. Res. 2, 105–110 (2011)

    CAS  Google Scholar 

  46. J. Garca-Serrano, E. Gomez-Hernandez, M. Ocampo-Fernandez, U. Pal, Effect of Ag doping on the crystallization and phase transition of TiO2 nanoparticles. Curr. Appl. Phys. 9, 1097–1105 (2009)

    Google Scholar 

  47. V. Swamy, B.C. Muddle, Q. Dai, Size-dependent modifications of the Raman spectrum of rutile TiO2. Appl. Phys. Lett. 89, 163118–163120 (2006)

    Google Scholar 

  48. J. Kanungo, H. Saha, S. Basu, Pd sensitized porous silicon hydrogen sensor influence of ZnO thin film. Sens. Actuators B 147, 128–136 (2010)

    CAS  Google Scholar 

  49. X. Wang, J. Tian, C. Fei, L. Lv, Y.W.G. Cao, Rapid construction of TiO2 aggregates using microwave assisted synthesis and its application for dye-sensitized solar cells. RSC Adv. 5, 8622–8629 (2015)

    CAS  Google Scholar 

  50. W.F. Zhang, M.S. Zhang, Z. Yin, Microstructures and visible photoluminescence of TiO2 nanocrystals. Phys. Status Solidi A 179, 319–327 (2000)

    CAS  Google Scholar 

  51. Y. Liu, R.O. Claus, Blue light emitting nanosized TiO2 colloids. J. Am. Chem. Soc. 119, 5273–5274 (1997)

    CAS  Google Scholar 

  52. B. Issa, I.M. Obaidat, B.A. Albiss, Y. Haik, Int. J. Mol. Sci. 14, 21266–21305 (2013)

    CAS  Google Scholar 

  53. Y. Lei, L.D. Zhang, Fabrication, characterization and photoluminescence properties of highly ordered TiO2 nanowire arrays. J. Mater. Res. 16, 1138–1144 (2001)

    CAS  Google Scholar 

  54. R. Velmurugan, B. Krishnakumar, B. Subashand, M. Swaminathan, Preparation and characterization of carbon nanoparticles loaded TiO2 and its catalytic activity driven by natural sunlight. Sol. Energy Mater. Sol. Cells 108, 205–212 (2013)

    CAS  Google Scholar 

  55. X. Liu, Z. Liu, J. Zheng et al., Characteristics of N-doped TiO2 nanotube arrays by N2-plasma for visible light-driven photocatalysis. J. Alloy. Compd. 509, 9970–9976 (2011)

    CAS  Google Scholar 

  56. P.K. Durra, A. Ginwalla, B. Hogg, B.R. Patton, B. Chwieroth, Z. Liang, Interaction of carbon monoxide with anatase surfaces at high temperature optimization of a carbon monoxide sensor. J. Phys. Chem. B 103, 4412–4422 (1999)

    Google Scholar 

  57. J. Huang, Q. Wan, Gas sensors based on semiconducting metal oxide one-dimensional nanostructures. Sensors 9, 9903–9924 (2009)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the University Grants Commission (Maulana Azad National Fellowship for minority Students-F1-17.1/2013-14/MANF-2013-14-CHR-TAM-21288/(SA-III)) New Delhi, India, which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Vijayalakshmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monamary, A., Vijayalakshmi, K. Highly sensitive hydrogen sensor based on nickel incorporated TiO2 nanostructures operating at room temperature. J Mater Sci: Mater Electron 29, 5316–5326 (2018). https://doi.org/10.1007/s10854-017-8497-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8497-7

Navigation