Skip to main content
Log in

Evaluation of the physical, optical, and electrical properties of SnO2: F thin films prepared by nebulized spray pyrolysis for optoelectronics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Fluorine-doped tin oxide (SnO2:F, FTO) thin films were prepared by the nebulized spray pyrolysis technique on glass substrates using tin(IV) chloride pentahydrate (SnCl2·5H2O) and ammonium fluoride (NH4F) as source materials. Different volumes of solvent were used to prepare the spray solution, and their effects on structural, optical, morphological, and electrical properties were investigated. X-ray diffraction patterns revealed the polycrystalline tetragonal structure of FTO films. FESEM images demonstrated well-aligned trigonal-shaped nano-grains. Optical band gap values were estimated to be in the range of 3.71–3.66 eV by Tauc’s plot. The effects of solvent volume on the resistivity, conductivity, carrier concentration, mobility, and figure of merit of FTO films were examined. The lowest electrical resistivity and sheet resistance values were 1.90 × 10−4 Ω cm and 4.96 Ω/cm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Russo, G. Cao, Appl. Phys. A Mater. Sci. Process. 90, 311 (2008)

    Article  Google Scholar 

  2. R. Presley, C. Munsee, C. Park, D. Hong, J. Wager, D. Keszler, J. Phys. D 37, 2810 (2004)

    Article  Google Scholar 

  3. K.-H. Kim, N.-M. Park, T.-Y. Kim et al., ETRI J. 27, 405 (2005). https://doi.org/10.4218/etrij.05.0104.0166

    Article  Google Scholar 

  4. J. Dutta, P. Roubeau, T. Emeraud et al., Thin Solid Films 239, 150 (1994)

    Article  Google Scholar 

  5. P. Patil, S. Sadale, S. Mujawar, P. Shinde, P. Chigare, Appl. Surf. Sci. 253, 8560 (2007)

    Article  Google Scholar 

  6. H. Kim, G. Kushto, R. Auyeung, A. Piqué, Appl. Phys. A 93, 521 (2008)

    Article  Google Scholar 

  7. G. Morris, A. McElnea, Appl. Surf. Sci. 92, 167 (1996)

    Article  Google Scholar 

  8. S. Ngamsinlapasathian, T. Sreethawong, Y. Suzuki, S. Yoshikawa, Sol. Energy Mater. Sol. Cells 90, 2129 (2006)

    Article  Google Scholar 

  9. S. Hussain, S.F. Shaikh, D. Vikraman et al., ChemPhysChem 16, 3959 (2015). https://doi.org/10.1002/cphc.201500644

    Article  Google Scholar 

  10. B. Stjerna, C.G. Granqvist, Sol. Energy Mater. 20, 225 (1990)

    Article  Google Scholar 

  11. M. Quaas, C. Eggs, H. Wulff, Thin Solid Films 332, 277 (1998)

    Article  Google Scholar 

  12. D.C. Paine, T. Whitson, D. Janiac, R. Beresford, C.O. Yang, B. Lewis, J. Appl. Phys. 85, 8445 (1999)

    Article  Google Scholar 

  13. J. Brown, P. Haycock, L. Smith, A. Jones, E. Williams, Sens. Actuators B 63, 109 (2000)

    Article  Google Scholar 

  14. E. Martin, M. Yan, M. Lane, J. Ireland, C. Kannewurf, R. Chang, Thin solid films 461, 309 (2004)

    Article  Google Scholar 

  15. K.S. Ramaiah, V.S. Raja, A.-K. Bhatnagar et al., Semicond. Sci. Technol. 15, 676 (2000)

    Article  Google Scholar 

  16. S.-H. Keshmiri, M. Rezaee-Roknabadi, S. Ashok, Thin solid films 413, 167 (2002)

    Article  Google Scholar 

  17. E. Elangovan, K. Ramamurthi, J. Optoelectron. Adv. Mater. 5, 45 (2003)

    Google Scholar 

  18. R.D. Prabu, S. Valanarasu, I. Kulandaisamy, V. Ganesh, M. Shkir, A. Kathalingam, J. Mater. Sci.: Mater. Electron. 28, 6754 (2017). https://doi.org/10.1007/s10854-017-6371-2

    Google Scholar 

  19. P. Karthick, D. Vijayanarayanan, S. Suja, M. Sridharan, K. Jeyadheepan, Asian J. Appl. Sci. 8, 259 (2015)

    Article  Google Scholar 

  20. S. Palanichamy, L. Amalraj, J.R. Mohamed, P.S.S. Kumar South Asian J. Eng. Technol. 2, 26 (2016)

    Google Scholar 

  21. K.D. Kumar, S. Valanarasu, V. Tamilnayagam, L. Amalraj, J. Mater. Sci.: Mater. Electron. 28, 14209 (2017)

    Google Scholar 

  22. D. Sheel, H. Yates, P. Evans et al., Thin Solid Films 517, 3061 (2009)

    Article  Google Scholar 

  23. A. Yadav, E. Masumdar, A. Moholkar, M. Neumann-Spallart, K. Rajpure, C. Bhosale, J. Alloys Compd. 488, 350 (2009)

    Article  Google Scholar 

  24. D. Vikraman, H.J. Park, S.-I. Kim, M. Thaiyan, J. Alloys Compd. 686, 616 (2016)

    Article  Google Scholar 

  25. S. Valanarasu, V. Dhanasekaran, M. Karunakaran, R. Chandramohan, T. Mahalingam, J. Nanosci. Nanotechnol. 14, 4286 (2014)

    Article  Google Scholar 

  26. T. Mahalingam, V. Dhanasekaran, G. Ravi, S. Lee, J. Chu, H.-J. Lim, J. Optoelectron. Adv. Mater. 12, 1327 (2010)

    Google Scholar 

  27. D. Tatar, B. Duzgun, Pramana J. Phys. 79, 137–150 (2012)

    Article  Google Scholar 

  28. A. Benhaoua, A. Rahal, B. Benhaoua, M. Jlassi, Superlattices Microstruct. 70, 61 (2014)

    Article  Google Scholar 

  29. C.-C. Lin, M.-C. Chiang, Y.-W. Chen, Thin Solid Films 518, 1241 (2009)

    Article  Google Scholar 

  30. P. Suri, M. Panwar, R. Mehra, Mater. Sci. Pol. 25, 137 (2007)

    Google Scholar 

  31. E. Elangovan, K. Ramamurthi, Appl. Surf. Sci. 249, 183 (2005)

    Article  Google Scholar 

  32. H. El-Zahed, A. El-Korashy, M.A. Rahem, Vacuum 68, 19 (2002)

    Article  Google Scholar 

  33. T.S. Moss, Optical properties of semiconductors. (Butterworth, London, 1959)

    Google Scholar 

  34. V. Dhanasekaran, T. Mahalingam, R. Chandramohan, J.-K. Rhee, J. Chu, Thin Solid Films 520, 6608 (2012)

    Article  Google Scholar 

  35. D. Das, R. Banerjee, Thin Solid Films 147, 321 (1987)

    Article  Google Scholar 

  36. M.A. Omar, Elementary Solid State Physics. (Addison-Wesley Publishing Company, Reading, 1987)

    Google Scholar 

  37. K.D. Kumar, V. Ganesh, M. Shkir, S. AlFaify, S. Valanarasu, J. Mater. Sci.: Mater. Electron. (2017). https://doi.org/10.1007/s10854-017-7985-0

    Google Scholar 

  38. F.Z. Bedia, A. Bedia, N. Maloufi, M. Aillerie, F. Genty, B. Benyoucef, J. Alloys Compd. 616, 312 (2014)

    Article  Google Scholar 

  39. G. Mavrodiev, M. Gajdardziska, N. Novkovski, Thin Solid Films 113, 93 (1984)

    Article  Google Scholar 

  40. H. Surahman, Y.K. Krisnandi, J. Gunlazuardi, Procedia Environ. Sci. 28, 242 (2015)

    Article  Google Scholar 

  41. M. Thirumoorthi, J.T.J. Prakash, Superlattices Microstruct. 89, 378 (2016)

    Article  Google Scholar 

  42. C.A. Trisdianto, A.H. Yuwono, T. Arini, N. Sofyan, D. Fikri, L.H. Lalasari, Int. J. Technol. 7, 1316 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This study was fully supported by DST (India) under the scheme of the Science and Engineering Research Board (SERB), DST. No. SB/FTP/PS-131/2013. This study was also partly supported by the Ministry of Trade, Industry and Energy (MOTIE, Korea) under the Sensor Industrial Technology Innovation Program (No. 10063682) and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2017R1D1A1A09000823).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhanasekaran Vikraman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, K.D.A., Valanarasu, S., Jeyadheepan, K. et al. Evaluation of the physical, optical, and electrical properties of SnO2: F thin films prepared by nebulized spray pyrolysis for optoelectronics. J Mater Sci: Mater Electron 29, 3648–3656 (2018). https://doi.org/10.1007/s10854-017-8295-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8295-2

Navigation