Skip to main content
Log in

Trap-modulated carrier transport tailors the dielectric properties of alumina/epoxy nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper focuses on the trap-modulated carrier transport in the alumina/epoxy nanocomposites (NCs) and its effect on the dielectric properties of NCs. The permittivity, conductivity, space charge and breakdown strength of the NCs are tested and the trap parameters are characterized. Results show that the effective permittivity and conductivity of NCs exhibit a lower value at filler loadings of 0.5 and 1 wt% compared with the neat epoxy, together with an enhancement in breakdown strength and a suppression in space charge accumulation. The improved dielectric properties at low filler loadings are attributed to the deep traps in the nanoparticle-polymer interfaces. The trap modulated carrier transport is formulated by Poole–Frenkel model, which demonstrates the introduction of deep traps could restrict the mobility of charge carriers, leading to the lower conductivity and enhanced breakdown strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. TJ Lewis, Trans, IEEE Dielectr. Electr. Insul. 15, 812–825 (1994)

    Article  Google Scholar 

  2. Y. Cao, P.C. Irwin, K. Younsi, IEEE Trans. Dielectr. Electr. Insul. 11, 797–807 (2004)

    Article  Google Scholar 

  3. J.K. Nelson, Y.J. Hu, Phys. D 38, 213–222 (2005)

    Article  Google Scholar 

  4. T. Tanaka, IEEE Trans. Dielectr. Electr. Insul 12, 914–928 (2005)

    Article  Google Scholar 

  5. R.C. Smith, C. Liang, M. Landry, J.K. Nelson, L.S. Schadler, IEEE Trans. Dielectr. Electr. Insul. 15, 187–196 (2008)

    Article  Google Scholar 

  6. J.K. Nelson, J.C. Fothergill, Nanotechnology 15, 586–595 (2004)

    Article  Google Scholar 

  7. M. Roy, J.K. Nelson, R.K. MacCrone, L.S. Schadler, C.W. Reed, R. Keefe, W. Zenger, IEEE Trans. Dielectr. Electr. Insul. 12, 629–643 (2005)

    Article  Google Scholar 

  8. T. Tanaka, M. Kozako, N. Fuse, Y. Ohki, IEEE Trans. Dielectr. Electr. Insul. 12, 669–681 (2005)

    Article  Google Scholar 

  9. P. Murugaraj, D. Mainwaring, N. Mora-Huertas, J. Appl. Phys. 98, 054304 (2005)

    Article  Google Scholar 

  10. Y. Ohki, M. Okada, N. Fuse, K. Iwai, M. Mizuno, K. Fukunaga, Appl. Phys. Express 1, 122401 (2008)

    Article  Google Scholar 

  11. S. Li, G. Yin, S. Bai, J. Li, IEEE Trans. Dielectr. Electr. Insul. 18, 1535–1543 (2011)

    Article  Google Scholar 

  12. E. Tuncer, I. Sauers, D.R. James, A.R. Ellis, M.P. Paranthaman, T. Aytug, S. Sathyamurthy, K.L. More, J. Li, A. Goyal, Nanotechnology 18, 025703 (2007)

    Article  Google Scholar 

  13. T. Heid, M.F. Fréchette, E. David, J. Mater. Sci. 50, 5494–5503 (2015)

    Article  Google Scholar 

  14. P. Preetha, M.J. Thomas, IEEE Trans. Dielectr. Electr. Insul. 18, 1526–1534 (2011)

    Article  Google Scholar 

  15. J. Castellon, S. Agnel, A. Toureille, M.F. Freìchette, S. Savoie, A. Krivda, L.E. Schmidt International Conference on Solid Dielectrics, pp. 301–304 (2010)

  16. D. Fabiani, G.C. Montanari, A. Dardano, G. Guastavino, L. Testa, M. Sangermano, IEEE Conf. Electr. Insul. Dielectr. Phenom. 710–713 (2008)

  17. P. Gonon, A.J. Boudefel, Appl. Phys. 99, 024308 (2006)

    Article  Google Scholar 

  18. P. Chu, H. Zhang, J. Zhao, F. Gao, Y. Guo, B. Dang, Z. Zhang, Compos. A 99, 139–148 (2017)

    Article  Google Scholar 

  19. P.O. Henk, T.W. Kortsen, T. Kvarts, High Perform. Polym. 11, 281–296 (1999)

    Article  Google Scholar 

  20. A.T. Edith, Thermal Characterization of Polymeric Materials, 2nd edn. vol. I (Academic Press, New York, 1997)

    Google Scholar 

  21. A.M. Mayes, Nat. Mater. 4, 651–652 (2005)

    Article  Google Scholar 

  22. F.W. Starr, T.B. Schrøder, S.C. Glotzer, Phys. Rev. E 64, 021802 (2001)

    Article  Google Scholar 

  23. S. Singha, M.J. Thomas, IEEE Trans. Dielectr. Electr. Insul. 15, 12–23 (2008)

    Article  Google Scholar 

  24. S. Singha, M.J. Thomas, A. Kulkarni, IEEE Trans. Dielectr. Electr. Insul. 17, 1249–1258 (2010)

    Article  Google Scholar 

  25. R.C. Picu, A.J. Rakshit, Chem. Phys. 126, 144909 (2007)

    Google Scholar 

  26. S.S. Sternstein, A.J. Zhu, Macromolecules 35, 7262–7273 (2002)

    Article  Google Scholar 

  27. L.A. Dissado, R.M. Hill, J. Chem. Soc. Faraday Trans 80, 291–319 (1984)

    Article  Google Scholar 

  28. S. Li, G. Yin, G. Chen, J. Li, S. Bai, L. Zhong, Y. Zhang, Q. Lei, IEEE Trans. Dielectr. Electr. Insul. 17, 1523–1535 (2010)

    Article  Google Scholar 

  29. M. Ieda, IEEE Trans. Electr. Insul. 19, 162–178 (1984)

    Article  Google Scholar 

  30. J. Katayama, Y. Ohki, N. Fuse, M. Kozako, T. Tanaka, IEEE Trans. Dielectr. Electr. Insul. 20, 157–165 (2013)

    Article  Google Scholar 

  31. Y. Chen, Y. Cheng, K. Wu, J.K. Nelson, L.A. Dissado, S. Li, IEEE Trans. Plasma Sci. 37, 195–203 (2009)

    Article  Google Scholar 

  32. M. Roy, J. Nelson, R. Maccrone, L. Schadler, J. Mater. Sci. 42, 3789–3799 (2007)

    Article  Google Scholar 

  33. G.S. Nadkarni, J.G. Simmons, J. Appl. Phys. 43, 3650–3656 (1972)

    Article  Google Scholar 

  34. H.N. Poole, Philos. Mag. 34, 195–204 (1917)

    Article  Google Scholar 

  35. L.A. Dissado, J.C. Fothergill, Electrical Degradation and Breakdown in Polymers. (Peter Peregrinus Ltd., London, 1992)

    Book  Google Scholar 

  36. W. Wang, D. Min, S. Li, IEEE Trans. Dielectr. Electr. Insul. 23, 564–572 (2015)

    Article  Google Scholar 

  37. K.C. Kao, IEEE 6th International Conference on properties and applications of dielectric materials, pp. 1–17 (2000)

Download references

Acknowledgements

The authors would like to thank Professor Yang Cao and Mrs. JoAnne Ronzello for their help with PEA and TDDS measurement at University of Connecticut. Boya Zhang thanks the China Scholarship Council (CSC) for the financial support during his visit to UCONN. This work was funded by the National Basic Research Program of China under Grant No. 2014CB239502.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Boya Zhang or Guixin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Gao, W., Chu, P. et al. Trap-modulated carrier transport tailors the dielectric properties of alumina/epoxy nanocomposites. J Mater Sci: Mater Electron 29, 1964–1974 (2018). https://doi.org/10.1007/s10854-017-8107-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8107-8

Navigation