Skip to main content
Log in

Capacitive, resistive and conducting characteristics of bismuth ferrite and lead magnesium niobate based relaxor electronic system

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The ferroelectric relaxor based BFO–PMN [bismuth ferrite (BiFeO3; BFO) and lead magnesium niobate (PbMg1/3Nb2/3O3; PMN)] binary electronic system has been synthesized making use of the solid state chemical reaction technique. The capacitive, resistive and conducting characteristics of the prepared solid solutions [((PbxBi1−x)(Mg0.33xNb0.66xFe1−x)O3) with x = 0.1, 0.2, 0.3 and 0.4] have been studied along with their structural and morphological characteristics. It has been revealed that the dielectric behaviour of BFO–PMN is modified with the addition of PMN content. The nature of phase has also been changed from a general ferroelectric towards a typical relaxor. The comprehensive experimental impedance analysis substantiates the contributions of grain boundary including the grains in the resistive and capacitive characteristics. The prepared compounds illustrate non-Debye type of dielectric relaxation behaviour. The studied material may pave the way for formulation of electronic components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. E. Dulkin, M. Roth, P.E. Janolin, B. Dkhil, Phys. Rev. B 73, 12102 (2006)

    Article  Google Scholar 

  2. S.N. Das, A. Pattanaik, S. Kadambini, S. Pradhan, S. Bhuyan, R.N.P. Choudhary, J. Mater. Sci. 27, 10099 (2016)

    CAS  Google Scholar 

  3. S. Bhuyan, J. Hu, Appl. Phys. Lett. 91, 264101 (2007)

    Article  Google Scholar 

  4. W. Wang, S. Wang, Y. Zhang., X. Zhao, H. Luo, J. Electron. Mater. 40, 11 (2011)

    Article  Google Scholar 

  5. A. Tripathy, S. Pramanik, A. Manna, S. Bhuyan, N.F.A. Shah, Z. Radzi, N.A.A. Osman, Sesnors 16, 1135 (2016)

    Google Scholar 

  6. C. Behera, R.N.P Choudhary, P.R. Das, J. Mater. Sci. 25, 2086 (2014)

    CAS  Google Scholar 

  7. Z. Kutnjak, J. Petzelt, R. Blinc, Nature 441, 956 (2006)

    Article  CAS  Google Scholar 

  8. I. Levin, T.G. Amos, J.C. Nino, J. Solid State Chem. 168, 69 (2002)

    Article  CAS  Google Scholar 

  9. A.K. Tagantsev, J.W. Lu, S. Stemmer, Appl. Phys. Lett. 86, 032901 (2005)

    Article  Google Scholar 

  10. S. Shankar, M. Kumar, A.K. Ghosh, O.P. Thakur, J. Mater. Sci. 25, 4896 (2014)

    CAS  Google Scholar 

  11. R. Wen, L. Zhou, L. Luo, N. Jiang, Q. Zheng, J. Liao, C. Xu, D. Lin, J. Mater. Sci. 26, 8341 (2015)

    CAS  Google Scholar 

  12. J.D. Bobic, R.M. Katiliute, M. Ivanov, M.M.V. Petrović, N.I. Ilić, A.S. Džunuzović, J. Banys, B.D. Stojanović, J. Mater. Sci. 27, 2448 (2016)

    CAS  Google Scholar 

  13. M. Villegas, J.R. Jurado, C. Moure, P. Duran, J. Mater. Sci. 29, 1090 (1994)

    Article  CAS  Google Scholar 

  14. G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999)

    Article  CAS  Google Scholar 

  15. D. Viehland, S.J. Jang, L.E. Cross, M. Wuttig, J. Appl. Phys. 68, 2916 (1990)

    Article  CAS  Google Scholar 

  16. P.K. Bajpai, M. Pastor, K.N. Singh, J. Electron. Mater. 43, 1403 (2014)

    Article  CAS  Google Scholar 

  17. M. Lejeune, J.P. Boilot, Ceram. Int. 9, 119 (1983)

    Article  CAS  Google Scholar 

  18. M.K.P. sahoo, R.N.P. Choudhary, Mater. Lett. 67, 308 (2012)

    Article  CAS  Google Scholar 

  19. M.M. Kumar, V.R. Palkar, K. Srinivas, S.V. Suryanarayana, Appl. Phys. Lett. 76, 2764 (2000)

    Article  CAS  Google Scholar 

  20. Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, Z.G. Liu, Appl. Phys. Lett. 84, 1731 (2004)

    Article  CAS  Google Scholar 

  21. E. Wu, J. Appl. Cryst. 22, 506 (1989)

    Article  CAS  Google Scholar 

  22. S.K. Pradhan, S.N. Das, S. Bhuyan, C. Behera, R. Padhee, R.N.P. Choudhary, Appl. Phys. A 122, 604 (2016)

    Article  Google Scholar 

  23. J. Cheng, S.W. Yu, J. Chen, Z. Meng, L.E. Cross, Appl. Phys. Lett. 89, 122911 (2006)

    Article  Google Scholar 

  24. A.K. Jonscher, Nature 267, 673 (1977)

    Article  CAS  Google Scholar 

  25. C.K. Suman, K. Prasad, R.N.P. Choudhary, J. Mater. Sci. 41, 369 (2006)

    Article  CAS  Google Scholar 

  26. K.K. Mishra, A.T. Satya, A. Bharathi, V. Sivasubramanian, V.R.K. Murthy, A.K. Arora, J. Appl. Phys. 110, 123529 (2011)

    Article  Google Scholar 

  27. Y. Liu, J. Wei, Y. Liu, X. Bai, P. Shi, S. Mao, X. Zhang, C. Li, B. Dkhil, J. Mater. Sci. 27, 3095 (2016)

    CAS  Google Scholar 

  28. V. Provenzano, L.P. Boesch, V. Volterra, C.T. Moynihan, P.B. Macedo, J. Am. Ceram. Soc. 55, 492 (1972)

    Article  CAS  Google Scholar 

  29. K. Parida, S.K. Dehury, R.N.P. Choudhary, J. Mater. Sci. 27, 11211 (2016)

    CAS  Google Scholar 

  30. S.K. Pradhan, S.N. Das, S. Halder, S. Bhuyan, R.N.P. Choudhary, J. Mater. Sci. 28, 9627 (2016)

    Google Scholar 

  31. R. Macdonald, Solid State Ion. 13, 147 (1984)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bhuyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S.N., Pradhan, S.K., Bhuyan, S. et al. Capacitive, resistive and conducting characteristics of bismuth ferrite and lead magnesium niobate based relaxor electronic system. J Mater Sci: Mater Electron 28, 18913–18928 (2017). https://doi.org/10.1007/s10854-017-7845-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7845-y

Navigation