Skip to main content
Log in

The piezoelectric response of electrospun PVDF nanofibers with graphene oxide, graphene, and halloysite nanofillers: a comparative study

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Although, many efforts were performed to develop piezoelectric systems with high energy conversion rate, but they still show insufficient performance. In this study, the effect of three nanofillers with different morphology and their concentration on macro/micro structure and piezoelectric properties of polyvinylidene fluoride (PVDF) nanofibers were investigated and compared. Graphene oxide (GO) and graphene (Gr) as planner nanofillers, and halloysite (Hal) nanotube were introduced into a PVDF solution in different concentrations (0.05–3.2 wt/wt%). The prepared solutions were fabricated into nanofibers through electrospinning method. The electroactive phase (β-phase) of nanofibrous PVDF mat increased up to ~49% in comparison with PVDF powder. The presence of nanofiller in PVDF matrix also increased it more up to 10%. Gr nanofiller had least effect on piezoelectric properties attributed to its low interaction with PVDF chains. PVDF/Hal nanocomposite with low filler content concentration (<0.1 wt/wt%) and PVDF/GO with high content of filler concentration (>0.4 wt/wt%) caused higher polar phase. Hal nanotubes with a rod like morphology caused more oriented and finer nanofibers than PVDF/GO and PVDF/Gr nanofibers. However, PVDF/0.8 Hal showed higher output voltage (0.1 V), despite of its lower β-phase in compared with PVDF/0.8GO nanocomposites. It was concluded that the piezoelectric response cannot be just evaluated with dielectric constant of nanofiller or β-phase percentage in an electrospun PVDF nanocomposite, but there are some other important factors like orientation and fineness of electrospun nanofibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Khajavi, M. Abbasipour, Piezoelectric PVDF Polymeric Films and Fibers: Polymorphisms, Measurements, and Applications (Springer, New York, 2016), pp. 313–336

    Google Scholar 

  2. P. Martins, A.C. Lopes, S. Lanceros-Mendez, Electroactive phases of poly (vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 39, 683–706 (2014)

    Article  Google Scholar 

  3. B. Mohammadi, A.A. Yousefi, S.M. Bellah, Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films. Polym. Test. 26, 42–50 (2007)

    Article  Google Scholar 

  4. H. Sobhani, M. Razavi-Nouri, A.A. Yousefi, Effect of flow history on poly (vinylidine fluoride) crystalline phase transformation. J. Appl. Polym. Sci 104, 89–94 (2007)

    Article  Google Scholar 

  5. V. Sencadas, M.V. Moreira, S. Lanceros-Méndez, A.S. Pouzada, R. Gregório Filho, (2006) α-to β Transformation on PVDF films obtained by uniaxial stretch. Mater. Sci. Forum 514, 872–876

    Article  Google Scholar 

  6. L. Li, M. Zhang, M. Rong, W. Ruan, Studies on the transformation process of PVDF from α to β phase by stretching. RSC Adv. 4, 3938–3943 (2014)

    Article  Google Scholar 

  7. A. Salimi, A.A. Yousefi, Analysis method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polym. Test. 22, 699–704 (2003)

    Article  Google Scholar 

  8. V. Sencadas, R. Gregorio Jr., S. Lanceros-Méndez, α to β Phase transformation and microestructural changes of PVDF films induced by uniaxial stretch. J. Macromol. Sci. 48, 514–525 (2009)

    Article  Google Scholar 

  9. A. Ferreira, P. Costa, H. Carvalho, J.M. Nóbrega, V. Sencadas, S. Lanceros-Mendez, Extrusion of poly (vinylidene fluoride) filaments: effect of the processing conditions and conductive inner core on the electroactive phase content and mechanical properties. J. Polym. Res 18, 1653–1658 (2011)

    Article  Google Scholar 

  10. P. Sajkiewicz, A. Wasiak, Z. Gocłowski, Phase transitions during stretching of poly (vinylidene fluoride). Eur. Polym. J. 35, 423–429 (1999)

    Article  Google Scholar 

  11. B.E. El Mohajir, N. Heymans, Changes in structural and mechanical behaviour of PVDF with processing and thermomechanical treatments. 1. Change in structure. Polymer 42, 5661–5667 (2001)

    Article  Google Scholar 

  12. M. Mohammadizadeh, A.A. Yousefi, Deposition of conductive polythiophene film on a piezoelectric substrate: effect of corona poling and nano-inclusions. Iran. Polym. J. 25, 415–422 (2016)

    Article  Google Scholar 

  13. H. Pan, B. Na, R. Lv, C. Li, J. Zhu, Z. Yu, Polar phase formation in poly (vinylidene fluoride) induced by melt annealing. J. Polym. Sci. B 50, 1433–1437 (2012)

    Article  Google Scholar 

  14. B.S. Ince-Gunduz, R. Alpern, D. Amare, J. Crawford, B. Dolan, S. Jones, R. Kobylarz, M. Reveley, P. Cebe, Impact of nanosilicates on poly (vinylidene fluoride) crystal polymorphism: part 1. Melt-crystallization at high supercooling. Polymer 51, 1485–1493 (2010)

    Article  Google Scholar 

  15. D. Yang, Y. Chen, β-phase formation of poly (vinylidene fluoride) from the melt induced by quenching. J. Mater. Sci. Lett. 6, 599–5603 (1987)

    Article  Google Scholar 

  16. A. Gradys, P. Sajkiewicz, S. Adamovsky, A. Minakov, S. Schick, Crystallization of poly (vinylidene fluoride) during ultra-fast cooling. Thermochim. Acta 461, 153–157 (2007)

    Article  Google Scholar 

  17. C. Ribeiro, V. Sencadas, J.L. Ribelles, S. Lanceros-Méndez, ) Influence of processing conditions on polymorphism and nanofiber morphology of electroactive poly (vinylidene fluoride) electrospun membranes. Soft Mater 8, 274–287 (2010)

    Article  Google Scholar 

  18. H.J. Chen, S. Han, C. Liu, Z. Luo, H.P. Shieh, R.S. Hsiao, B.R. Yang, ) Investigation of PVDF-TrFE composite with nanofillers for sensitivity improvement. Sens. Actuator A 245, 135–139 (2016)

    Article  Google Scholar 

  19. Y.K. Fuh, C.C. Kuo, Z.M. Huang, S.C. Li, E.R. Liu, A Transparent and flexible graphene-piezoelectric fiber generator. Small 12, 1875–1881 (2016)

    Article  Google Scholar 

  20. Z.H. Liu, C.T. Pan, L.W. Lin, H.W. Lai, Piezoelectric properties of PVDF/MWCNT nanofiber using near-field electrospinning. Sens. Actuator A 193, 13–24 (2013)

    Article  Google Scholar 

  21. A.C. Lopes, C.M. Costa, C.J. Tavares, I.C. Neves, S. Lanceros-Mendez, Nucleation of the electroactive γ phase and enhancement of the optical transparency in low filler content poly (vinylidene)/clay nanocomposites. J. Phys. Chem. C 115, 18076–81802 (2011)

    Article  Google Scholar 

  22. P. Martins, C. Caparros, R. Gonçalves, P.M. Martins, M. Benelmekki, G. Botelho, S. Lanceros-Mendez, Role of nanoparticle surface charge on the nucleation of the electroactive β-poly (vinylidene fluoride) nanocomposites for sensor and actuator applications. J. Phys. Chem. C 116, 15790–15794 (2012)

    Article  Google Scholar 

  23. Y. Wu, S.L. Hsu, C. Honeker, D.J. Bravet, D.S. Williams, The role of surface charge of nucleation agents on the crystallization behavior of poly (vinylidene fluoride). J. Phys. Chem. B 116, 7379–7388 (2012)

    Article  Google Scholar 

  24. D.H. Wang, W.H. Liao, Magnetorheological fluid dampers: a review of parametric modelling. Smart Mater Struct 20, 023001 (2011)

    Article  Google Scholar 

  25. C. Chang, V.H. Tran, J. Wang, Y.K. Fuh, L. Lin, Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10, 726–731 (2010)

    Article  Google Scholar 

  26. Chan C., Fuh Y.K., Lin L.A., Direct-write piezoelectric PVDF nanogenerator, Actuators and Microsystems, Conference 2009 Jun 21 IEEE. PP. 1485–1488.

  27. H. Shao, J. Fang, H. Wang, T. Lin, Effect of electrospinning parameters and polymer concentrations on mechanical-to-electrical energy conversion of randomly-oriented electrospun poly (vinylidene fluoride) nanofiber mats. RSC Adv 5, 14345–14350 (2015)

    Article  Google Scholar 

  28. A. Gheibi, M. Latifi, A.A. Merati, R. Bagherzadeh, Electrical power generation from piezoelectric electrospun nanofibers membranes: electrospinning parameters optimization and effect of membranes thickness on output electrical voltage. J. Polym. Res. 21, 571 (2014)

    Article  Google Scholar 

  29. A. Gheibi, M. Latifi, A.A. Merati, R. Bagherzadeh, Piezoelectric electrospun nanofibrous materials for self-powering wearable electronic textiles applications. J. Polym. Res. 21, 1–7 (2014)

    Google Scholar 

  30. J. Fang, H. Niu, H. Wang, X. Wang, T. Lin, Enhanced mechanical energy harvesting using needleless electrospun poly (vinylidene fluoride) nanofibre webs. Energy Environ. Sci. 6, 2196–2202 (2013)

    Article  Google Scholar 

  31. J. Fang, X. Wang, T. Lin, Electrical power generator from randomly oriented electrospun poly (vinylidene fluoride) nanofibre membranes. J. Mater. Chem. 21, 11088–11091 (2011)

    Article  Google Scholar 

  32. Y. Ahn, J.Y. Lim, S.M. Hong, J. Lee, J. Ha, H.J. Choi, Y. Seo, Enhanced piezoelectric properties of electrospun poly (vinylidene fluoride)/multiwalled carbon nanotube composites due to high β-phase formation in poly (vinylidene fluoride). J. Phys. Chem. C 117, 11791–11799 (2013)

    Article  Google Scholar 

  33. G.H. Kim, S.M. Hong, Y. Seo, Piezoelectric properties of poly (vinylidene fluoride) and carbon nanotube blends: β-phase development. Phys. Chem. Chem. Phys. 11, 10506–10512 (2009)

    Article  Google Scholar 

  34. S. Yu, W. Zheng, W. Yu, Y. Zhang, Q. Jiang, Z. Zhao, Formation mechanism of b-phase in PVDF/CNT composite prepared by the sonication method. Macromolecules 42, 8870–8874 (2009)

    Article  Google Scholar 

  35. Ou ZY, Liu ZH, Pan CT, Lin LW, Chen YJ, Lai HW Study on piezoelectric properties of near-field electrospinning PVDF/MWCNT nano-fiber. In Nano/Micro Engineered and Molecular Systems (NEMS), 2012 7th IEEE International Conference on 2012 Mar 5 (pp. 125–128). IEEE.

  36. B. Li, C. Xu, J. Zheng, C. Xu, Sensitivity of pressure sensors enhanced by doping silver nanowires. Sensor 14, 9889–9899 (2014)

    Article  Google Scholar 

  37. D. Shah, P. Maiti, E. Gunn, D.F. Schmidt, D.D. Jiang, C.A. Batt, E.P. Giannelis, Dramatic enhancements in toughness of polyvinylidene fluoride nanocomposites via nanoclay-directed crystal structure and morphology. Adv. Mater. 16, 1173–1177 (2004)

    Article  Google Scholar 

  38. L. Priya, J.P. Jog, Poly (vinylidene fluoride)/clay nanocomposites prepared by melt intercalation: crystallization and dynamic mechanical behavior studies. J. Polym. Sci. B 40, 1682–1689 (2002)

    Article  Google Scholar 

  39. Y.L. Liu, Y. Li, J.T. Xu, Z.Q. Fan, Cooperative effect of electrospinning and nanoclay on formation of polar crystalline phases in poly (vinylidene fluoride). ACS Appl. Mater. Interfaces 2, 1759–1768 (2010)

    Article  Google Scholar 

  40. M.S. Bafqi, R. Bagherzadeh, M. Latifi, Fabrication of composite PVDF-ZnO nanofiber mats by electrospinning for energy scavenging application with enhanced efficiency. J. Polym. Res. 22, 1–9 (2015)

    Article  Google Scholar 

  41. R.K. Layek, S. Samanta, D.P. Chatterjee, A.K. Nandi, Physical and mechanical properties of poly (methyl methacrylate)-functionalized graphene/poly (vinylidine fluoride) nanocomposites: piezoelectric β polymorph formation. Polymer 51, 5846–5856 (2010)

    Article  Google Scholar 

  42. H.J. Kim, M. Noor-A-Alam, J.Y. Son, Y.H. Shin, Origin of piezoelectricity in monolayer halogenated graphane piezoelectrics. Chem. Phys. Lett. 603, 62–66 (2014)

    Article  Google Scholar 

  43. J. Shang, Y. Zhang, L. Yu, B. Shen, F. Lv, P.K. Chu, Fabrication and dielectric properties of oriented polyvinylidene fluoride nanocomposites incorporated with graphene nanosheets. Mater. Chem. Phys. 134, 867–874 (2012)

    Article  Google Scholar 

  44. S. Mohamadi, N. Sharifi-Sanjani, Investigation of the crystalline structure of PVDF in PVDF/PMMA/graphene polymer blend nanocomposites. Polym Compos 32, 1451–1460 (2011)

    Article  Google Scholar 

  45. S. Ansari, E.P. Giannelis, Functionalized graphene sheet—Poly (vinylidene fluoride) conductive nanocomposites. J. Polym. Sci. B 47, 888–897 (2009)

    Article  Google Scholar 

  46. A.A. Yousefi, Hybrid polyvinylidene fluoride/nanoclay/MWCNT nanocomposites: PVDF crystalline transformation. Iran. Polym. J. 20, 25–733 (2011)

    Google Scholar 

  47. S. Cho, J.S. Lee, J. Jang, Poly (vinylidene fluoride)/NH2-treated graphene nanodot/reduced graphene oxide nanocomposites with enhanced dielectric performance for ultrahigh energy density capacitor. ACS Appl. Mater. Interfaces 7, 9668–9681 (2015)

    Article  Google Scholar 

  48. P. Thakur, A. Kool, B. Bagchi, S. Das, P. Nandy, Enhancement of β phase crystallization and dielectric behavior of kaolinite/halloysite modified poly (vinylidene fluoride) thin films. Appl. Clay Sci. 99, 149–159 (2014)

    Article  Google Scholar 

  49. T. Huang, M. Lu, H. Yu, Q. Zhang, H. Wang, M. Zhu, Enhanced power output of a triboelectric nanogenerator composed of electrospun nanofiber mats doped with graphene oxide. Sci. Rep 5, 13942 (2015)

    Article  Google Scholar 

  50. Z.Y. Jiang, G.P. Zheng, K. Zhan, Z. Han, J.H. Yang, Formation of piezoelectric β-phase crystallites in poly (vinylidene fluoride)-graphene oxide nanocomposites under uniaxial tensions. J. Phys. D 48, 245303 (2015)

    Article  Google Scholar 

  51. P. Fakhri, H. Mahmood, B. Jaleh, A. Pegoretti, Improved electroactive phase content and dielectric properties of flexible PVDF nanocomposite films filled with Au- and Cu-doped graphene oxide hybrid nanofiller. Synth. Met 220, 653–660 (2016)

    Article  Google Scholar 

  52. F. Mokhtari, M. Shamshirsaz, M. Latifi, S. Asadi, Comparative evaluation of piezoelectric response of electrospun PVDF (polyvinilydine fluoride) nanofiber with various additives for energy scavenging application. J. Text. Inst. 108, 1–9 (2016)

    Google Scholar 

  53. F. Akbar, M. Kolahdouz, S. Larimian, B. Radfar, H.H. Radamson, Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing. J. Mater. Sci Mater. Electron. 26(7), 4347 (2015)

    Article  Google Scholar 

  54. Y. Zhu, S. Murali, W. Cai, Z. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and application. Adv. Mater 22, 3906–3924 (2010)

    Article  Google Scholar 

  55. D. Rawtani, Y. Agrawal, Multifarios applications of halloysite nanotube: a review. Rev. Adv. Mater. Sci 30, 282–295 (2012)

    Google Scholar 

  56. D. Vatansever, R.L. Hadimani, T. Shah, E. Siores, An investigation of energy harvesting from renewable sources with PVDF and PZT. Smart. Mater Struct. 20, 055019 (2011)

    Article  Google Scholar 

  57. C.A. Martin, J.K. Sandler, M.S. Shaffer, M.K. Schwarz, W. Bauhofer, K. Schulte, A.H. Windle, Formation of percolating networks in multi-wall carbon-nanotube–epoxy composites. Compos. Sci. Technol 64, 2309–2316 (2004)

    Article  Google Scholar 

  58. H.J. Lee, S. Zhang, Y. Bar-Cohen, S. Sherrit, High temperature, high power piezoelectric composite transducers. Sensors 14, 14526–14552 (2014)

    Article  Google Scholar 

  59. M. Liu, B. Guo, Q. Zou, M. Du, D. Jia, Interaction between halloysite and 2,5-bis(2-benzoxazolyl) thiophene and their effects on reinforcement of polypropylene/halloysite nanocomposites. Nanotechnology 19, 205709 (2008)

    Article  Google Scholar 

  60. L. Wu, J. Xue, T. Itoi, N. Hu, Y. Li, C. Yan, J. Qiu, H. Ning, W. Yuan, B. Gu, Improved energy harvesting capability of poly (vinylidene fluoride) films modified by reduced graphene oxide. J. Intell. Mater. System. Struct. 25, 1813–1824 (2014)

    Article  Google Scholar 

  61. M.A. Rahman, B.C. Lee, D.T. Phan, G.S. Chung, Fabrication and characterization of highly efficient flexible energy harvesters using PVDF–graphene nanocomposites. Smart Mater. Struct. 22, 085017 (2014)

    Article  Google Scholar 

  62. M. El Achaby, M.K. Arrakhiz, S. Vaudreuil, E.M. Essassi, A. Qaiss, Piezoelectric β-polymorph formation and properties enhancement in graphene oxide–PVDF nanocomposite films. Appl. Surf. Sci. 258, 7668–7677 (2012)

    Article  Google Scholar 

  63. R. Moradi, J. Karimi-Sabet, M. Shariaty-Niassar, M.A. Koochaki, Preparation and characterization of polyvinylidene fluoride/graphene superhydrophobic fibrous films. Polymers 7, 1444–1463 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Khajavi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 684 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasipour, M., Khajavi, R., Yousefi, A.A. et al. The piezoelectric response of electrospun PVDF nanofibers with graphene oxide, graphene, and halloysite nanofillers: a comparative study. J Mater Sci: Mater Electron 28, 15942–15952 (2017). https://doi.org/10.1007/s10854-017-7491-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7491-4

Navigation