Skip to main content
Log in

Series resistance and interface states effects on the C–V and G/w–V characteristics in Au/(Co3O4-doped PVA)/n-Si structures at room temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Microwave-assisted method has been used for preparation of Co3O4 nanopowders. Then, Co3O4–doped polyvinyl alcohol (PVA) composites are deposited on n-Si wafer using spin coating method. The main electrical parameters of the Au/(Co3O4-doped PVA)/n-Si type Schotkky barrier diodes (SBDs) have been investigated by capacitance–voltage-frequency (C–V-f) and conductance–voltage-frequency (G/ω–V-f) measurements at room temperature and they were performed in the frequency range of 2 kHz–2 MHz and at (±4.5 V) by 50 mV steps. The XRD pattern of the as-prepared sample show that all diffraction peaks appeared in this pattern match very well with ICDD data and they can be readily indexed to the Co3O4 nanostructures, no other peaks were observed, which indicates the high purity of the sample. The effects of (Co3O4-doped PVA), series resistance (Rs) and surface states (Nss) on electrical characteristics have been investigated in detail. In order to eliminate the effect of Rs on high frequencies these measurements, the measured Cm and Gm/ω values were adjustment. The high values of Nss at low frequencies are responsible for the non-ideal behavior of C–V and G/ω–V characteristics. The obtained value of N D exponentially decreases; the value of Φ B (C–V) exponentially increases with increases frequency. Such behavior of N D and Φ B (C–V) are expected behavior and it is attributed to the particular density distribution of Nss, polarization processes and interfacial layer. Experimental results show that the C–V and G/ω–V characteristics of SBDs are affected not only in Nss and Rs but also interfacial polymer (Co3O4-doped PVA) layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Khatami, S. Pourseyedi, M. Khatami, H. Hamidi, M. Zaeifi, L. Soltani, Bioresour. Bioprocess. 2(19), 1–7 (2015)

    Google Scholar 

  2. R.M. Agrawal, S.D. Charpe, F.C. Raghuwanshi, G.T. Lamdhade, Int. J. Appl. Innov. Eng. Manag. 4(2), 141–145 (2015)

    Google Scholar 

  3. Y. Azizian-Kalandaragh, F. Sedaghatdoust-Bodagh, A. Habibi-Yangjeh, Superlattices Microstruct. 81, 15–160 (2015)

    Article  Google Scholar 

  4. K.T. Al- Rasoul, I.M. Ibrahim, If.M. Ali, R.M. Al-Haddad, Int. J. Sci. Technol. Res. 3(5), 213–217 (2014)

    Google Scholar 

  5. P. Saha, T.P. Majumder, S.C. Debnath, Int. J. Eng. Sci. Innov. Technol. 3(2), 86–91 (2014)

    Google Scholar 

  6. C.-W. Tang, C.-B. Wang, S.-H. Chien, Thermochim. Acta 473(1–2), 68–73 (2008)

    Article  Google Scholar 

  7. T. Pauporte, L. Mendoza, M. Cassir, M.C. Bernard, J. Chivot, J. Electrochem. Soc. 152(2), 49–53 (2005)

    Article  Google Scholar 

  8. H. Yamaura, K. Moriya, N. Miura, N. Yamazoe, Sens. Actuators B 65(1–3), 39–41 (2000)

    Article  Google Scholar 

  9. C. Mansour, T. Pauport´e, A. Ringued´e, V. Albin, M. Cassir, J. Power Sources 156(1), 23–27 (2006)

    Article  Google Scholar 

  10. R.J. Wu, J-G. Wu, T.-K. Tsai, C-T. Yeh, Sens. Actuators B 120(1), 104–109 (2006)

    Article  Google Scholar 

  11. L. Wang, X.C. Song, Y.F. Zheng, Micro Nano Lett. 7, 1026–1028 (2012)

    Article  Google Scholar 

  12. Y. Gu, F. Jian, X. Wang, Thin Solid Films 517, 652–655 (2008)

    Article  Google Scholar 

  13. G. Wang, X. Shen, J. Horvat, B. Wang, H. Liu, D. Wexler, J. Yao, J. Phys. Chem. C 113, 4357–4361 (2009)

    Article  Google Scholar 

  14. H.J. Nam, T. Sasaki, N. Koshizaki, J. Phys. Chem. B 110, 23081–23084 (2006)

    Article  Google Scholar 

  15. M. Ando, T. Kobayashi, S. Iijima, M. Haruta, J. Mater. Chem. 7, 1779–1783 (1997)

    Article  Google Scholar 

  16. S. Demirezen, A. Kaya, Ö. Vural, Ş. Altındal, Mater. Sci. Semicond. Process. 33, 140–148 (2015)

    Article  Google Scholar 

  17. H.G. Çetinkaya, Ş. Altındal, I. Orak, I. Uslu, J. Mater. Sci. (2017). doi:10.1007/s10854-017-6490-9

    Google Scholar 

  18. F. Yakuphanoglu, J. Alloys Compd. 494, 451–455 (2010)

    Article  Google Scholar 

  19. O. Çiçek, H. Uslu Tecimer, S.O. Tan, H. Tecimer, İ. Orak, Ş. Altındal, Compos. B 113, 14–23 (2017)

    Article  Google Scholar 

  20. J. Kwon, J. An, H. Jang, S. Choi, D. Chung, M. Lee, H. Cha, J. Park, C. Park, Y. Kim, J. Polym. Sci. A 49, 1119–1128 (2011)

    Article  Google Scholar 

  21. S. Demirezena, A. Kaya, S.A. Yerişkin, M. Balbaşı, İ. Uslu, Results Phys. 6, 180–185 (2016)

    Article  Google Scholar 

  22. E. Nicollian, A. Goetzberger, Bell Syst. Tech. J. 46, 1055–1133 (1967)

    Article  Google Scholar 

  23. H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures, 2nd edn. (Wiley, NewYork, 1964)

    Google Scholar 

  24. S. Demirezen, Appl. Phys. A 112, 827 (2013)

    Article  Google Scholar 

  25. S. Demirezen, S. Altındal, S. Özçelik, E. Özbay, Microelectron. Reliab. 51, 2153 (2011)

    Article  Google Scholar 

  26. H. Tecimer, H. Uslu, Z.A. Alahmed, F. Yakuphanoğlu, Ş. Altındal, Compos. B 57, 25–30 (2014)

    Article  Google Scholar 

  27. H.C. Card, E.H. Rhoderick, J. Phys. D 4, 1589 (1971)

    Article  Google Scholar 

  28. E.H. Nicollian, A. Goetzberger, Appl. Phys. Lett. 7, 216 (1965)

    Article  Google Scholar 

  29. H. Kanbur, Ş. Altındal, A. Tataroğlu, Appl. Surf. Sci. 252, 1732–1738 (2005)

    Article  Google Scholar 

  30. A. Kaya, S. Alialy, S. Demirezen, M. Balbaşı, S.A. Yerişkin, A. Aytimur, Ceram. Int. 42, 3322–3329 (2016)

    Article  Google Scholar 

  31. P. Chowdhury, H.C. Barshilia, N. Selvakumar, B. Deepthi, K.S. Rajam, A.R. Chaudhuri, S.B. Krupanidhi, Phys. B 403, 3718 (2008)

    Article  Google Scholar 

  32. R.F. Bhajantri, V. Ravindrachary, A. Harisha, C. Ranganathaiah, G.N. Kumaraswamy, Appl. Phys. A 87, 797 (2007)

    Article  Google Scholar 

  33. A. Tataroğlu, A.A. Al-Ghamdi, F. El-Tantawy, W.A. Farooq, F. Yakuphanoğlu, Appl. Phys. A 122, 220 (2016)

    Article  Google Scholar 

  34. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  35. K.E. Bohlin, J. Appl. Phys. 60(3), 1223 (1986)

    Article  Google Scholar 

  36. Ş. Altındal, H. Kanbur, İ. Yücedağ, A. Tataroğlu, Microelectron. Eng. 85, 1495 (2008)

    Article  Google Scholar 

  37. W.A. Hill, C.C. Coleman, Solid State Electron. 23, 987 (1980)

    Article  Google Scholar 

  38. H. Uslu, Ş. Altındal, T. Tunç, İ. Uslu, T.S. Mammadov, J. Appl. Polym. Sci. 120, 322 (2011)

    Article  Google Scholar 

  39. Ş. Altındal, H. Uslu, J. Appl. Phys. (2011). doi:10.1063/1.3554479

    Google Scholar 

  40. S. Altındal, S.A. Yerişkin, B. Sarı, H.İ. Unal, N. Yavaş, J. Appl. Polym. Sci. 113, 2955 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Demirezen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirezen, S., Orak, İ., Azizian-Kalandaragh, Y. et al. Series resistance and interface states effects on the C–V and G/w–V characteristics in Au/(Co3O4-doped PVA)/n-Si structures at room temperature. J Mater Sci: Mater Electron 28, 12967–12976 (2017). https://doi.org/10.1007/s10854-017-7128-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7128-7

Keywords

Navigation