Skip to main content
Log in

Enhanced visible light responsive photocatalysis by ZnO:Mg/RGO nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Mg and RGO activated ZnO nanocomposites were prepared using a low-cost soft chemical method. As per the structural studies the samples exhibit wurtzite structure of ZnO with hexagonal crystal system. No secondary phases were observed. The photocatalytic activity of the prepared samples were assessed through the degradation of cationic dyes, methylene blue (MB) and malachite green (MG) under visible light irradiation. The studies revealed that the ZnO:Mg/RGO nanocomposite exhibits enhanced photocatalytic as well as antibacterial behavior compared to bare ZnO. The optical, structural and surface morphological studies support the reports on the photocatalytic and antibacterial activities of the synthesized samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Gao, X. Luan, J. Wang, B. Wang, K. Li, Y. Li, P. Kang, G. Han, Preparation of Er3+: YAIO3/Fe-doped TiO2-ZnO and its application in photocatalytic degradation of dyes under solar light irradiation. Desalination 268, 68–75 (2011)

    Article  Google Scholar 

  2. J. wang, X.M. Fan, K. Tian, Z.W. Zhou, Y. Wang, Largely improved photocatalytic properties of Ag/tetrapod-like ZnO nanocompounds prepared with different PEG contents. Appl. Surf. Sci. 257, 7763–7770 (2011)

    Article  Google Scholar 

  3. A.D. Paola, E.G. Lopez, G. Marci, L. Palmisano, A survey of photocatalytic materials for environmental remediation. J. Hazard. Mater. 211–212, 3–29 (2012)

    Article  Google Scholar 

  4. A.S. Haja Hameed, C. Karthikeyan, V. Senthil Kumar, S. Kumaresan, S. Sasikumar, Effect of Mg2+, Ca2+, Sr2 + and Ba2 + metal ions on the antifungal activity of ZnO nanoparticles tested against Candida albicans. Mater. Sci. Eng. C 52 171–177 (2015)

    Article  Google Scholar 

  5. R. Ullah, J. Dutta, Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J. Hazard. Mater. 156, 194–200 (2008)

    Article  Google Scholar 

  6. D.P. Norton, Y.W. Heo, M.P. Ivill, K. Ip, S.J. Pearton, M.F. Chisholm, T. Steiner, ZnO: growth, doping & processing. Mater. Today 7 34–40 (2004)

    Article  Google Scholar 

  7. M. Norouzi, M. Kolahdouz, P. Ebrahimi, M. Ganjian, R. Soleimanzadeh, K. Narimani, H. Radamson, Thermoelectric energy harvesting using array of vertically aligned Al-doped ZnO nanorods. Thin Solid Films 619, 41–47 (2016). doi:10.1016/j.tsf.2016.10.041

    Article  Google Scholar 

  8. V.L. Chandraboss, L. Natanapatham, B. Karthikeyan, J. Kamalakkannan, S. Prabha, S. Senthilvelan, Effect of bismuth doping on the ZnO nanocomposite material and study of its photocatalytic activity under UV-light. Mater. Res. Bull. 48, 3707–3712 (2013)

    Article  Google Scholar 

  9. R.S. Patil, M.R. Kokate, D.V. Shinde, S.S. Kolekar, S.H. Han, Synthesis and enhancement of photocatalytic activities of ZnO by silver nanoparticles. Spectrochim. Acta Part A 122 113–117 (2014)

    Article  Google Scholar 

  10. M. Azarang, A. Shuhaimi, R. Yousefi, A. M. Golsheikh, M. Sookhakian. Synthesis and characterization of ZnO NPs/reduced graphene oxide nanocomposite prepared in gelatin medium as highly efficient photo-degradation of MB. Ceram. Int. 40 10217–10221 (2014)

    Article  Google Scholar 

  11. B. Pant, M. Park, H.Y. Kim, S.J. Park, Ag-ZnO photocatalyst anchored on carbon nanofibers: synthesis, characterization, and photocatalytic activities. Synth. Metals 220, 533–537 (2016)

    Article  Google Scholar 

  12. H.W. He, H. Zhao, H. Jia, J.J. Yin, Z. Zheng, Determination of reactive oxygen species from ZnO micro-nano structures with shape-dependent photocatalytic activity. Mater. Res. Bull. 53, 246–250 (2014)

    Article  Google Scholar 

  13. X. Zhou, T. Shi, H. Zhou, Hydrothermal preparation of reduced graphene oxide hybrid with high performance in photocatalytic degradation. Appl. Surf. Sci. 258, 6204–6211 (2012)

    Article  Google Scholar 

  14. Y. Leng, W. Wang, L. Zhang, F. Zabihi, Y. Zhao, Fabrication and phptocatalytical enhancement of ZnO-graphene hybrid using a continuous solvothermal technique. J. Supercrit. Fluids 91, 61–67 (2014)

    Article  Google Scholar 

  15. K. Huang, Y.H. Li, C. Liang, H. Wang, C.X. Ye, Y.J. Wang, R. Zhang, D.Y. Fan, H.J. Yang, Y.G. Wang, M. Lei, A facile route to reduced graphene oxide-Zinc oxide nanorod composites with enhanced photocatalytic activity. Powder Technol. 257, 113–119 (2014)

    Article  Google Scholar 

  16. T. Lv, L. Pan, X. Liu, T. Lu, G. Zhu, Z. Sun, Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide composite synthesized via microwave-assisted reaction. J. Alloys Compd. 509, 10086–10091 (2011)

    Article  Google Scholar 

  17. D. Chen, D. Wang, Q. Ge, G. Ping, M. Fan, L. Qin, L. Bai, C. Lv, K. Shu, Graphene–wrapped ZnO nanospheres as a photocatalyst for high performance photocatalysis. Thin Solid Films 574, 1–9 (2015)

    Article  Google Scholar 

  18. S.V. Nipane, P.V. Korake, G.S. Gokavi, Graphene-zinc oxide nanorod nanocomposite as photocatalyst for enhanced degradation of dyes under UV light irradiation. Ceram. Int. 41, 4549–4557 (2015)

    Article  Google Scholar 

  19. X. Li, Q. Wang, Y. Zhao, W. Wu, J. Chen, H. Meng, Green synthesis and photo-catalytic performances for ZnO-reduced graphene oxide nanocomposites. J. Colloid Interface Sci. 411, 69–75 (2013)

    Article  Google Scholar 

  20. I. Tathil, E. Bacaksiz, C.K. Buruk, C. Breen, M. Sokmen, A short literature survey on iron and cobalt doped TiO2 thin films and photocatalytic activity of these film against fungi. J. Alloys Compd. 517, 80–86 (2012)

    Article  Google Scholar 

  21. K. Ravichandran, K. Karthika, B. Sakthivel, N. JabenaBegum, S. Snega, K. Swaminathan, V. Senthamilselvi, Tuning the combined magnetic and antibacterial properties of ZnO nanopowders through Mn doping for biomedical applications. J. Magn. Magn. Mater. 358–359, 50–55 (2014)

    Article  Google Scholar 

  22. P. Amornpitoksuk, S. Suwanboon, S. Sangkanu, A. Sukhoom, J. Wudtipan, K. Srijan, S. Kaewtaro, Synthesis, photocatalytic and antibacterial activities of ZnO particles modified by diblock copolymer. Powder.Technol. 212, 432–438 (2011)

    Article  Google Scholar 

  23. K. Ravichandran, P. Sathish, S. Snega, K. Karthika, P.V. Rajkumar, K. Subha, B. Sakthivel, Improving the antibacterial efficiency of ZnO nanopowders through simultaneous anionic (F) and cationic (Ag) doping. Powder. Technol. 274, 250–257 (2015)

    Article  Google Scholar 

  24. R. Saravanan, E. Thirumal, V.K. Gupta, V. Narayanan, A. Stephen, The photocatalytic activity of ZnO prepared by simple thermal decomposition method at various temperatures. J. Mol. Liq. 177, 394–401 (2013)

    Article  Google Scholar 

  25. F. Sun, X. Qiao, F. Tan, W. Wang, X. Qiu, One-step microwave synthesis of Ag/ZnO nanocomposites with enhanced photocatalytic performance. J. Mater. Sci. 47, 7262–7268 (2012)

    Article  Google Scholar 

  26. D. Zhang, F. Zeng, Visible light-activated cadmium-doped ZnO nanostructured photocatalyst for the treatment of methylene blue dye. J. Mater. Sci. 47, 2155–2161 (2012)

    Article  Google Scholar 

  27. S. Liu, H. Sun, A. Suvorova, S. Wang, One-pot hydrothermal synthesis of ZnO-reduced graphene oxide composites using Zn powders for enhanced photocatalysis. Chem. Eng. J. 229, 533–539 (2013)

    Article  Google Scholar 

  28. J. Chen, Y. Li, L. Huang, C. Li, G. Shi, High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process. Carbon 81, 826–834 (2015)

    Article  Google Scholar 

  29. G. Du, Y. Li, L. Zhang, X. Wang, P. Liu, Y. Feng, X. Sun, Facile self-assembly of honeycomb ZnO particles decorated reduced graphene oxide. Mater. Lett. 128, 242–244 (2014)

    Article  Google Scholar 

  30. S. Suwanboon, P. Amornpitoksuk, P. Bangrak, N. Muensit, Optical, photocatalytic and bactericidal properties of Zn1_xLaxO and Zn1_xMgxO nanostructures prepared by a sol–gel method, Ceram. Int. 39, 5597–5608 (2013)

    Article  Google Scholar 

  31. K. Ravichandran, P.V. Rajkumar, B. Sakthivel, K. Swaminathan, L. Chinnappa, Role of precursor material and annealing ambience on the physical properties of SILAR. Ceram. Int. 40, 12375–12382 (2014)

    Article  Google Scholar 

  32. K. Ravichandran, M. Vasanthi, K. Thirumurugan, B. Sakthivel, K. Karthika, Annealing induced reorientation of crystallites in Sn doped ZnO films. Opt. Mater. 37, 59–64 (2014)

    Article  Google Scholar 

  33. E. Umukoro, G. Peleyeju, J.C. Ngila, O.A. Arotiba, Photocatalytic degradation of acid blue 74 in water using Ag–Ag 2 O–ZnO nanostructures anchored an graphene oxide. Solid State Sci. 51, 66–73 (2016)

    Article  Google Scholar 

  34. Z. Quan, X. Liu, Y. Qi, Z. Song, S. Qi, G. Zhou, X. Xu, Robust room temperature ferromagnetism and band gap tuning in nonmagnetic Mg doped ZnO films. Appl. Surf. Sci. 399, 751–757 (2017)

    Article  Google Scholar 

  35. X. Chen, Y. He, Q. Zhang, L. Li, D. Hu, T. Yin, Fabrication of sandwich-structured ZnO/reduced graphite oxide composite and its photocatalytic properties. J. Mater. Sci. 45, 953–960 (2010)

    Article  Google Scholar 

  36. R. Mohan, K. Ravichandran, A. Nithya, K. Jothivenkatachalam, C. Ravidhas, B. Sakthivel, Influence of spray flux density on the photocatalytic activity and certain physical properties of ZnO thin films. J. Mater. Sci. 25, 2546–2553 (2014)

    Google Scholar 

  37. K. Ravichandran, K. Subha, N. Dineshbabu, A. Manivasaham, Enhancing the electrical parameters of ZnO films deposited using a low-cost chemical spray technique through Ta doping. J. Alloys Compd. 656, 332–338 (2016)

    Article  Google Scholar 

  38. K. Ravichandran, K. Karthika, M. Baneto, K. Shanthakumari, K.C. Lalithambika, Inducing superparamagnetic behavior and enhancing antibacterial efficiency of ZnO nanopowders through Mn + F doping. J. Mater. Sci. (2014). doi:10.1007/s10854-014-2615-6

    Google Scholar 

  39. B. Li, T. Liu, Y. Wang, Z. Wang, ZnO/graphene oxide nanocomposite with remarkably enhanced visible-light –driven photocatalytic performance. J. Colloid Interface Sci. 377, 114–121 (2012)

    Article  Google Scholar 

  40. Y. Wang, X. Zhao, L. Duan, F. Wang, H. Niu, W. Guo, A. Ali, Structure, luminescence and photocatalytic activity of Mg-doped ZnO nanoparticles prepared by auto combustion method. Mater. Sci. Semicond. Process. 29, 372–379 (2015)

    Article  Google Scholar 

  41. J. Qin, X. Zhang, Y. Xueb, N. Kittiwattanothai, P. Kongsittikul, N. Rodthongkum, S. Limpanart, M. Ma, R. Liu, A facile synthesis of nanorods of ZnO/graphene oxide composites with enhanced photocatalytic activity. Appl. Surf. Sci. 321, 226–232 (2014)

    Article  Google Scholar 

  42. K. Ravichandran, K. Nithiyadevi, S. Gopalakrishnan, R. Ganapathiraman, M. Baneto, K. Swaminathan, B. Sakthivel, Enhancement of photocatalytic efficiency of ZnO nanopowders through Ag+ graphene addition. Mater. Technol. (2015). doi:10.1080/10667857.2015.1117711

    Google Scholar 

  43. K.C. Barick, S. Singh, M. Aslam, D. Bahadur, Porosity and photocatalytic studies of transition metal doped ZnO nanoclusters. Microporous Mesoporous Mater. 134, 195–202 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the Department of Science and Technology–Science and Engineering Research Board (DST-SERB), India, through the research scheme (EMR/2016/003326) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ravichandran.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nithiyadevi, K., Ravichandran, K. Enhanced visible light responsive photocatalysis by ZnO:Mg/RGO nanocomposites. J Mater Sci: Mater Electron 28, 10929–10939 (2017). https://doi.org/10.1007/s10854-017-6873-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6873-y

Keywords

Navigation