Skip to main content
Log in

Study of polymer Graphene Quantum Dot nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report a synthesis of well dispersed Graphene Quantum Dot (GQD) nanocomposites in a host cellulose acetate (CA) polymer system. It was systematically characterized using X-ray diffraction (XRD), Scanning electron microscope (SEM), Transmission electron microscope (TEM), Atomic force microscope (AFM), Fourier transform infrared spectroscopy (FTIR) and Ultra-violet and Visible (UV–Vis), Photoluminescence (PL) techniques. Carboxylic and hydroxyl functional groups of GQD have chemically interacted with hydroxyl functional group of polymer network that leads to stabilization of the nanocomposite system. We observed that the amorphous to semi-crystalline phase disparity as a function of GQD loading which predominantly influenced the properties of nanocomposites. Decreased direct band gap of nanocomposites was analyzed by UV–Vis spectroscopic technique. Due to uniform dispersion and optimal loading of GQD in CA matrix an intense photoluminescence spectrum was observed. The existence of GQD occupied in the polymer system was examined by SEM, AFM and TEM microscopic techniques. It has been found that electrical conductivity of the composite was depended on temperature and similarly, decreased softness was related to the function of GQD loading. This investigation can be extendable for the devolvement of optical and electrical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. V. Georgakilas, J.A. Perman, J. Tucek, R. Zboril, Chem. Rev 115, 4744–4822 (2015)

    Article  Google Scholar 

  2. X. Pan, W. Qiu, E. Skafidas, Sci. Rep. 6, 36167 (2016)

    Article  Google Scholar 

  3. S. Bak, D. Kim, H. Lee, Curr. Appl. Phys. 16, 1192–1201 (2016)

    Article  Google Scholar 

  4. S. Zhou, H. Xu, W. Gan, Q. Yuan, RSC Adv. 1–14 (2016)

  5. G. Rajender, P.K. Giri, J. Mater. Chem. C 1–41 (2016)

  6. Z. Li, Z. Li, Y. Wu, J. Nan, H. Wang, X. Zhang, J. Zhang, B. Yang, RSC Adv. 6, 97853–97860 (2016)

    Article  Google Scholar 

  7. A.F. de Faria, A.C.M. de Moraes, P.F. Andrade, D.S. de Silva, M. do Carmo Gonçalves, L.O. Alves. Cellulose (2016). doi:10.1007/s10570-016-1140-6

    Google Scholar 

  8. A.D. Lima, M.C. Paiva, A. Machado, J. Polym. Eng. (2016). doi:10.1515/polyeng-2015-0388

    Google Scholar 

  9. N. Jahan, W. Khan, A. Azam, A. H. Naqvi, AIP Conf. Proc. 1731, 050061-1–050061-3 (2016). doi:10.1063/1.4947715

    Google Scholar 

  10. P. Kumar, A. Kumar, K. Y. Cho, T. K. Das, V. Sudarsan, AIP Adv. 7, 015103 (2017) doi:10.1063/1.4973535

    Article  Google Scholar 

  11. L. Wang, S. Tricard, P. Yue, J. Zhao, W. Shen, J. Bios 77, 1112–1118 (2016)

    Google Scholar 

  12. A. Kovalchuk, K. Huang, C. Xiang, A.A. Marti, J.M. Tour, ACS. Appl. Mater. Interfaces 7, 26063–26068 (2015)

    Article  Google Scholar 

  13. J. Shen, Y. Zhu, X. Yang, J. Zong, J. Zhang, C. Li, New J. Chem. 36, 97–101 (2012)

    Article  Google Scholar 

  14. L.M. Long, N.N Dinh, T.Q Trung, J. Nano Mater. (2016) doi:10.1155/2016/5849018

    Google Scholar 

  15. H.C. Lim, S.H. Min, E. Lee, J. Jang, S.H. Kim, J.I. Hong, ACS Appl. Mater. Interface (2015). doi:10.1021/acsami.5b02434

    Google Scholar 

  16. M. Dinari, M.M. Momeni, M. Goudarzirad, J. Mater. Sci. (2015). doi:10.1007/s10853-015-9605-9

    Google Scholar 

  17. C. Lu, L. Zhang, C. Xu, Z. Yin, S. Zhou, J. Wang, R. Huang, C. Zhang, W. Yang, J. Lu, Adv. RSC 6, 67400 (2016)

    Article  Google Scholar 

  18. A.S.T. M., Ahmad, Principles of Nanoscience and Nanotechnology: (Narosa publishing house Pvt. Ltd, New Delhi, 2010), p 93

  19. M. Gopiraman, K. Fujimori, K. Zeeshan, B. S. Kim, I. S. Kim, Express Polym. Lett. 7, 6:554–563, (2013)

    Article  Google Scholar 

  20. V.K. Suhas, P.J.M. Gupta,, R. Carrot, M. Singh, Chaudhary, S. Kushwaha. J. biortech 216, 1066–1076 (2016)

    Google Scholar 

  21. M.D.E. Uddin, R.M. Layek, H.Y. Kim, N.H. Kim, D. Hui, J.H. Lee, J. Compos. 90, 223–231, (2016)

    Article  Google Scholar 

  22. H. Qin, T. Gong, Y. Jin, Y. Cho, C. Shin, C. Lee, T. Kim, J. Carbon 94: 181–188, (2015)

    Article  Google Scholar 

  23. J. Zhang, Y.-q. Ma, N. Li, J.L. Zhu, T. Zhang, W. Zhang, B. Liu, J. Nano Mater. (2016). doi:10.1155/2016/9245865

    Google Scholar 

  24. J.G. Mc Nally, W. Vanselow, JACS 52: 3846–3856, (1930).

    Article  Google Scholar 

  25. Z. Gan, H. Xu, Y. Hao, Nanoscale (2016). doi:10.1039/C6NR00605A

    Google Scholar 

  26. B. Kimx, S.Y. Kang, D.K. Kim, S.H. Moon, E.H. Park, S.K. Kang, J. Noncrysol. 412, 45–48, (2015).

    Article  Google Scholar 

  27. S. Anitha, B. Brabu, D.J. Thiruvadigal, C. Gopalakrisnan, S.T. Natarajan. J. Carbpol. 97, 856–863 (2013)

    Google Scholar 

  28. W.S. Kuo, C.L.L Hsu, H.H. Chen, C.Y. Chang, H.F. Kao, L.C.S. Chou, Y.C. Chen, S.J. Chen, W.T. Chang, S.W. Tseng, J.Y. Wang, Y.C. Pu, Nanoscale (2016). doi:10.1039/c6nr02614a

    Google Scholar 

  29. Q Li, Q Z Xue, X.L Gao, Q.B Zheng, Express Polym. Lett. 3, 769–777 (2009)

    Article  Google Scholar 

  30. A. Szentes, Cs. Varga, G. Horvath, L. Bartha, Z. Konya, H. Haspel, J. Szel, A. Kukovecz, eXPRESS Polym. Lett. 6, 494–502, (2012)

    Article  Google Scholar 

  31. D.P. Kepi, Z.M. Markovi, S.P. Jovanovi, D.B. Perusko, M.D. Budimir, I.D.H. Antunovi, V.B. Pavlovi, B.M.T. Markovi, J. Synthmet 198, 150–154 (2014)

    Google Scholar 

  32. Q. Wang, Y. Shen, J. Tan, K. Xu, T. Shen, M. Cao, F. Gu, L. Wang, Proc. SPIE 9068, 90680, (2015)

    Google Scholar 

  33. D. Ciolacu, F. Ciolacu, V. Popa, Cellul. Chem. Technol. 45(1–2), 13–21, (2011).

    Google Scholar 

  34. F.A. Permatasari, A.H. Aimon, F. Iskandar, T. Ogi, K. Okuyama, Sci. Rep. 6, 21042 (2016)

    Article  Google Scholar 

  35. D. Jiang, Y. Chen, N. Li, W. Li, Z. Wang, J. Zhu, H. Zhang, B. Liu, S. Xu, J. Pols Org. (2015). doi:10.1371/journal.pone:0144906

    Google Scholar 

  36. S. Kumar, A.K. Ojha, B. Ahmed, A. Kumar, J. Das, A. Materny, Mater. Today Commun. 11, 76–86 (2017)

    Article  Google Scholar 

  37. L. Baldino, M. Sarno, S. Cardea, S. Irusta, P. Ciambelli, J. Santamaria, E. Reverchon, Ind. Eng. Res. (2015). doi:10.1021/acs.iecr.5b01452

    Google Scholar 

  38. A.C.M. de Moraes, P.F. Andrade, A.F de Faria, M.B Simoes, F.C.C.S Salmomao, E.B. Barros, M. do Carmo Goncalves, O.L. Alves. J. Carbpol 123, 217–227 (2015)

    Google Scholar 

  39. K.A. Bhat, P. Rajangam, S. Dharmalingam. J. Mater. Sci. 47, 1038–1045 (2012)

    Article  Google Scholar 

  40. M. Hasanzadeh, A. Karimzadeh, S. Sadeghi, A. Mokhtarzadeh, N. Shadjou, A. Jouyban, J. Mater. Sci. 27, 6488–6495 (2016)

    Google Scholar 

Download references

Acknowledgements

Authors are highly thankful for Naval Research Board, NBR, DRDO, New Delhi project No. 259/MAT/11–12, for providing instrumentation facility for electrical characterization. Authors would also like to thank VIT University for providing the SEM under DST-FIST project, TEM (FEI-TECHNAI G2-20 TWIN) and other characterization techniques like XRD, FTIR, UV–Vis, PL facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girish M. Joshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arthisree, D., Joshi, G.M. Study of polymer Graphene Quantum Dot nanocomposites. J Mater Sci: Mater Electron 28, 10516–10524 (2017). https://doi.org/10.1007/s10854-017-6825-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6825-6

Keywords

Navigation