Skip to main content
Log in

Low temperature reduction of graphene oxide film by ammonia solution and its application for high-performance supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Here we demonstrate that graphene oxide (GO) film on Ni foam can be doped with nitrogen atoms and reduced directly at a lower temperature of 90 °C using ammonia solution as reducing agent and nitrogen source. The reduction and nitrogen doping of GO occur simultaneously when GO film on Ni foam is immersed into ammonia solution. The nitrogen doping can be realised and the content of N in graphene film turns out to be rather good as high as 3.60%. When used as binder-free electrode, the resulting graphene film on Ni foam delivers a gravimetric capacitance of 230 F g−1. It also exhibites relatively an outstanding rate capability of 164 F g−1 at 83.3 A g−1 and better cycle stability that capacitance retention maintains at 96.7% of its initial capacitance capacitance after 2000 cycles. The method also provides a universal route for preparing a binder-free graphene-based electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.R. Miller, P. Simon, Science 321, 651 (2008)

    Article  Google Scholar 

  2. G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797 (2012)

    Article  Google Scholar 

  3. A. Burke, J. Power Sources 91, 37 (2000)

    Article  Google Scholar 

  4. L.L. Zhang, X.S. Zhao, Chem. Soc. Rev. 38, 2520 (2009)

    Article  Google Scholar 

  5. P. Huang, C. Lethien, S. Pinaud, K. Brousse, R. Laloo, V. Turq, M. Respaud, A. Demortière, B. Daffos, P.L. Taberna, Science 351, 691 (2016)

    Article  Google Scholar 

  6. M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.L. Taberna, C.P. Grey, B. Dunn, P. Simon, Nat. Energy 1, 16070 (2016)

    Article  Google Scholar 

  7. P. Simon, Y. Gogotsi, Nat. Mater. 7, 845 (2008)

    Article  Google Scholar 

  8. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff. Nano Lett. 8, 3498 (2008)

    Article  Google Scholar 

  9. M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Nature 516, 78 (2014)

    Google Scholar 

  10. L. Liu, Z. Niu, J. Chen, Chem. Soc. Rev. 45, 4340 (2016)

    Article  Google Scholar 

  11. V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna, S.H. Tolbert, H.D. Abruña, P. Simon, B. Dunn, Nat. Mater. 12, 518 (2013)

    Article  Google Scholar 

  12. T. Lin, I.W. Chen, F. Liu, C. Yang, H. Bi, F. Xu, F. Huang, Science 350, 1508 (2015)

    Article  Google Scholar 

  13. V. Augustyn, P. Simon, B. Dunn, Energy Environ. Sci. 7, 1597 (2014).

    Article  Google Scholar 

  14. J. Zhang, X.S. Zhao, ChemSusChem 5, 818 (2012)

    Article  Google Scholar 

  15. C.C. Hu, K.H. Chang, A. Mingchamp Lin, Y.T. Wu, Nano Lett. 6, 2690 (2006)

    Article  Google Scholar 

  16. S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, ACS Nano 4, 2822 (2010)

    Article  Google Scholar 

  17. X. Xia, J. Tu, Y. Mai, X. Wang, C. Gu, X. Zhao, J. Mater. Chem. 21, 9319 (2011)

    Article  Google Scholar 

  18. F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini, Science 347, 1246501 (2015)

    Article  Google Scholar 

  19. R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, Nat. Mater. 14, 271 (2015)

    Article  Google Scholar 

  20. X. Cao, Z. Yin, H. Zhang, Energy Environ. Sci. 7, 18 (2014).

    Google Scholar 

  21. J. Chen, K. Sheng, P. Luo, C. Li, G. Shi, Adv. Mater. 24, 4569 (2012)

    Article  Google Scholar 

  22. B.G. Choi, M.H. Yang, W.H. Hong, J.W. Choi, S.H. Yun, ACS Nano 6, 4020 (2012)

    Article  Google Scholar 

  23. Y. Zhu, S. Murali, M.D. Stoller, A. Velamakanni, R.D. Piner, R.S. Ruoff, Carbon 48, 2118 (2010)

    Article  Google Scholar 

  24. Y. Zhao, C. Hu, Y. Hu, H. Cheng, G. Shi, L. Qu, Angew. Chem. Int. Ed. 51, 11371 (2012)

    Article  Google Scholar 

  25. A.N. Obraztsov, Nat. Nanotechnol., 4, 212 (2009)

    Article  Google Scholar 

  26. X. Li, C.W. Magnuson, A. Venugopal, R.M. Tromp, J.B. Hannon, E.M. Vogel, L. Colombo, R.S. Ruoff, J. Am. Chem. Soc. 33, 2816 (2011)

    Article  Google Scholar 

  27. Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H.M. Cheng, Nat. Mater. 10, 424 (2011)

    Article  Google Scholar 

  28. X. Du, C. Zhou, H.-Y. Liu, Y.-W. Mai, G. Wang, J. Power Sources 241, 460 (2013)

    Article  Google Scholar 

  29. M.D. Stoller, R.S. Ruoff, Energy Environ. Sci., 3, 1294 (2010)

    Article  Google Scholar 

  30. E. Frackowiak, F. Béguin, Carbon 39, 937 (2001)

    Article  Google Scholar 

  31. J. Yang, E. Zhang, X. Li, Y. Yu, J. Qu, Z.Z. Yu, ACS Appl. Mater. Interfaces 8, 2297 (2015)

    Article  Google Scholar 

  32. C.M. Chen, Q. Zhang, X.C. Zhao, B. Zhang, Q.Q. Kong, M.G. Yang, Q.H. Yang, M.Z. Wang, Y.G. Yang, R. Schlögl, J. Mater. Chem. 22, 14076 (2012)

    Article  Google Scholar 

  33. Z.Y. Sui, Y.N. Meng, P.W. Xiao, Z.Q. Zhao, Z.X. Wei, B.H. Han, ACS Appl. Mater. Interfaces 7, 1431 (2015)

    Article  Google Scholar 

  34. L.L. Zhang, X. Zhao, M.D. Stoller, Y. Zhu, H. Ji, S. Murali, Y. Wu, S. Perales, B. Clevenger, R.S. Ruoff. Nano Lett. 12, 1806 (2012)

    Article  Google Scholar 

  35. M.F. El-Kady, S. Veronica, D. Sergey, R.B. Kaner, Science 335, 1326 (2012)

    Article  Google Scholar 

  36. H. Huang, Y. Tang, L. Xu, S. Tang, Y. Du, ACS Appl. Mater. Interfaces 6, 10248 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 515710065 and 61264006), the Natural Science Foundation of Guangxi (Grant No. 2013GXNSFGA019007), and the Key Laboratory of Guangxi for Nonferrous Metals and Materials Processing Technology (Grant No. 12-A-01-07).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haifu Huang or Jin Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Huang, H., Zhou, W. et al. Low temperature reduction of graphene oxide film by ammonia solution and its application for high-performance supercapacitors. J Mater Sci: Mater Electron 28, 10098–10105 (2017). https://doi.org/10.1007/s10854-017-6771-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6771-3

Keywords

Navigation