Skip to main content
Log in

Simple planar heterojunction fullerene-free organic photovoltaic cell with high open-circuit voltages above 1.4 V

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we describe the performance of organic photovoltaic cells (OPVs) based on the electron donor–acceptor pairing of rubrene and boron subphthalocyanine chloride (SubPc). An open-circuit voltage as high as 1.4 V is obtained, which is resulted from large difference between the highest occupied molecular orbital of the electron donor rubrene and the lowest unoccopied molecular orbital of the electron acceptor SubPc. Device performance shows a strong dependence on the thickness of rubrene as donor, and peak power conversion efficiency is achieved at a thickness of rubrene as thin as 5 nm. The optimized OPVs realize a power conversion efficiency of 2.4% under a simulated AM1.5 G solar illumination at 100 mW/cm2. A better stability of the cells with SubPc as acceptor is also achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. Li, R. Zhu, Y. Yang, Nat. Photon. 6(3), 153–161 (2012)

    Article  Google Scholar 

  2. Z. He, C. Zhong, S. Su, Nat. Photon. 6(9), 591–595 (2012)

    Article  Google Scholar 

  3. O. Vigil-Galán, M. Courel, J.A. Andrade-Arvizu, JMSE 26(8), 5562–5573 (2015)

    Google Scholar 

  4. H. Zhen, J. Liu, L. Hou, JMSE 25(8), 3559–3565 (2014)

    Google Scholar 

  5. Y. Shibano, H. Imahori, C. Adachi, J. Phys. Chem. C 113(34), 15454–15466 (2009)

    Article  Google Scholar 

  6. T. Ameri, G. Dennler, C. Lungenschmied, Energy Environ. Sci. 2(4), 347–363 (2009)

    Article  Google Scholar 

  7. M.J. Currie, J.K. Mapel, T.D. Heidel, Science 321(5886), 226–228 (2008)

    Article  Google Scholar 

  8. P. Panda, D. Veldman, J. Sweelssen, J. Phys. Chem. B 111(19), 5076–5081 (2007)

    Article  Google Scholar 

  9. S. Liu, W. Liu, J. Xu, ACS Appl. Mater. Interfaces 6(9), 6765–6775 (2014)

    Article  Google Scholar 

  10. H. Kim, S. Nam, J. Jeong, Korean J. Chem. Eng. 31(7), 1095–1104 (2014)

    Article  Google Scholar 

  11. M. Song, S. Yuan, J. Yin, Environ. Sci. Technol. 46(6), 3457–3464 (2012)

    Article  Google Scholar 

  12. A. Hamed, Y.Y. Sun, Y.K. Tao, Phys. Rev. B 47(16), 10873 (1993)

    Article  Google Scholar 

  13. S. Park, J.M. Vohs, R.J. Gorte, Nature, 404(6775), 265–267 (2000)

    Article  Google Scholar 

  14. A. Layek, S. Middya, P.P. Ray, JMSE 24(10), 3749–3755 (2013)

    Google Scholar 

  15. M. MWienk, M. Turbiez, J. Gilot, Adv Mater. 20(13), 2556–2560 (2008)

    Article  Google Scholar 

  16. C. Wild, P. Koidl, W. Müller-Sebert, Diam. Relat. Mater. 2(2–4): 158–168 (1993)

    Article  Google Scholar 

  17. L.J.A. Koster, V.D. Mihailetchi, R. Ramaker, Appl. Phys. Lett. 86(12), 123509–123509 (2005)

    Article  Google Scholar 

  18. B.P. Rand, D.P. Burk, S.R. Forrest, Phys. Rev. B, 75(11): 115327 (2007)

    Article  Google Scholar 

  19. S. Wang, E.I. Mayo, M.D. Perez, Appl. Phys. Lett. 94(23): 233304 (2009)

    Article  Google Scholar 

  20. H. Gommans, T. Aernouts, B. Verreet, Adv. Funct. Mater. 19(21): 3435–3439 (2009)

    Article  Google Scholar 

  21. Y. Shu, Adv. Mater. Interfaces 3(17), 1600179 (2016)

    Article  Google Scholar 

  22. V. Jankus, E.W. Snedden, D.W. Bright, Phys. Rev. B 87(22), 224202 (2013)

    Article  Google Scholar 

  23. B. Maennig, J. Drechsel, D. Gebeyehu, Appl. Phys. A 79(1), 1–14 (2004)

    Article  Google Scholar 

  24. J. Kim, S. Yim, Appl. Phys. Lett. 99(19), 193303 (2011)

    Article  Google Scholar 

  25. H. Liao, C.H. Lee, Y.C. Ho, J. Mater. Chem. 22(21), 10589–10596 (2012)

    Article  Google Scholar 

  26. M. Knupfer, Appl. Phys. A 77(5), 623–626 (2003)

    Article  Google Scholar 

  27. S.F. Alvarado, P.F. Seidler, G.D. Lidzey, Phys. Rev. Lett. 81(5), 1082 (1998)

    Article  Google Scholar 

  28. S.W. Cho, L.F.J. Piper, A. DeMasi, J. Phys. Chem. C 114(4), 1928–1933 (2010)

    Article  Google Scholar 

  29. S. Braun, W.R. Salaneck, M. Fahlman, Adv. Mater. 21(14-15), 1450–1472 (2009)

    Article  Google Scholar 

  30. N. Koch, A. Kahn, J. Ghijsen, Appl. Phys. Lett. 82(1), 70–72 (2003)

    Article  Google Scholar 

  31. S. Braun, W. Osikowicz, Y. Wang, Org. Electron. 8(1), 14–20 (2007)

    Article  Google Scholar 

  32. S.E. Shaheen, R. Radspinner, N. Peyghambarian, Appl. Phys. Lett. 79(18), 2996–2998 (2001)

    Article  Google Scholar 

  33. C.H. Peters, J.P. Kastrop, Adv. Energy Mater. 1(4), 491–494 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work were financially supported in part of the National Natural Science Foundation of China program(51503022), Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices program (KFJJ201507), Basic and Frontier Research Program of Chongqing Municipality (cstc2015jcyjA50036), Natural Science Foundation of Yongchuan District program(Ycstc,2015nc4001), and Research program of Chongqing Municipality (KJ1601126).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Zhong, Xingwu Yan or Lu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Zhong, J., Yan, X. et al. Simple planar heterojunction fullerene-free organic photovoltaic cell with high open-circuit voltages above 1.4 V. J Mater Sci: Mater Electron 28, 9167–9173 (2017). https://doi.org/10.1007/s10854-017-6650-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6650-y

Keywords

Navigation