Skip to main content
Log in

Two facile methods to produce the cobalt manganite nanostructures and evaluation of their photocatalytic performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we report the preparation of ultra-uniform CoMn2O4 nanostructures via simple co-precipitation and microwave-assisted co-precipitation routes. The as-prepared cobalt manganite nanostructures were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray microanalysis, vibrating sample magnetometer and UV–Vis diffuse reflectance spectroscopy. Results prove that by controlling the various parameters such as precipitating agent, surfactant, solvent, calcination temperature and microwave power, different particle size and morphology of the CoMn2O4 nanostructures can be achieved. The photodegradation of the Acid Violet 7 (monoazo dye) as water pollutant in wastewater coming from textile and dyeing industries was carried out to evaluate the photocatalytic activity of as-prepared CoMn2O4 nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G. Yang, X. Xu, W. Yan, H. Yang, S. Ding, Electrochim. Acta 137, 462 (2014)

    Article  Google Scholar 

  2. C. Zhao, F. Feng, X. Wang, R. Liu, S. Zhao, Q. Shen, Powder Tech. 261, 55 (2014)

    Article  Google Scholar 

  3. F.Y. Cheng, J. Shen, B. Peng, Y.D. Pan, Z.L. Tao, J. Chen, Nat. Chem. 3, 79 (2011)

    Article  Google Scholar 

  4. W.-J. Lan, C.-C. Kuo, C.-H. Chen, Chem. Commun. 49, 3025 (2013)

    Article  Google Scholar 

  5. X. Zhai, W. Yang, M. Li, G. Lv, J. Liu, X. Zhang, Carbon 65, 277 (2013)

    Article  Google Scholar 

  6. P. Vigneshwaran, M. Kandiban, N. Senthil Kumar, V. Venkatachalam, R. Jayavel, I. Vetha Potheher, J. Mater. Sci. Mater. Electron. (2016). doi:10.1007/s10854-016-4343-6

    Google Scholar 

  7. L. Yao, L. Zhang, Y. Liu, L. Tian, J. Xu, T. Liu, D. Liu, C. Wang, CrystEngComm (2016). doi:10.1039/C6CE01905F

    Google Scholar 

  8. M.Y. Nassar, S. Abdallah, RSC Adv. (2016). doi:10.1039/C6RA12424K

    Google Scholar 

  9. M. Prabu, P. Ramakrishnan, S. Shanmugam, Electrochem. Comm. 41, 59 (2014)

    Article  Google Scholar 

  10. Z. Xing, Z.C. Ju, J. Yang, H.Y. Xu, Y.T. Qian, Nano Res. 7, 477 (2012)

    Article  Google Scholar 

  11. Y. Xu, X. Wang, C. An, Y. Wang, L. Jiao, H. Yuan, J. Mater. Chem. A 2, 16480 (2014)

    Article  Google Scholar 

  12. A.K. Mondal, D. Su, S. Chen, A. Ung, H.-S. Kim, G. Wang, Chem. Eur. J. 21, 1526 (2015)

    Article  Google Scholar 

  13. D. Ghanbari, M. Salavati-Niasari, F. Beshkar, O. Amiri, J. Mater. Sci. Mater. Electron. (2015). doi:10.1007/s10854-015-3502-5

    Google Scholar 

  14. F. Yunyun, L. Xu, Z. Wankun, Z. Yuxuan, Y. Yunhan, Q. Honglin, X. Xuetang, W. Fan, Appl. Surf. Sci. 357, 2013 (2015)

    Article  Google Scholar 

  15. M.H. Kim, Y.J. Hong, Y.C. Kang, RSC Adv. 3, 13110 (2013)

    Article  Google Scholar 

  16. F.M. Courtel, H. Duncan, Y. Abu-Lebdeh, I.J. Davidson, J. Mater. Chem. 21, 10206 (2011)

    Article  Google Scholar 

  17. H.T. Zhang, X.H. Chen, Nanotechnology 17, 1384 (2006)

    Article  Google Scholar 

  18. S.A. Hosseini, D. Salari, A. Niaei, F. Deganello, G. Pantaleo, P. Hojati, J. Environ. Sci. Health A 46, 291 (2011)

    Article  Google Scholar 

  19. T.A. Khan, S. Dahiya, I. Ali, Appl. Clay Sci. 69, 58 (2012)

    Article  Google Scholar 

  20. N.F. Cardoso, R.B. Pinto, E.C. Lima, T. Calvete, C.V. Amavisca, B. Royer, M.L. Cunha, T.H.M. Fernandes, I.S. Pinto, Desalination 269, 92 (2011)

    Article  Google Scholar 

  21. W. Wang, T. Jiao, Q. Zhang, X. Luo, J. Hu, Y. Chen, Q. Peng, X. Yan, B. Li, RSC Adv. 5, 56279 (2015)

    Article  Google Scholar 

  22. S.A. Hosseini, A. Niaei, D. Salari, S.R. Nabavi, Ceram. Inter. 38, 1655 (2012)

    Article  Google Scholar 

  23. F. Beshkar, O. Amiri, M. Salavati-Niasari, F. Beshkar, J. Mater. Sci. Mater. Electron. 26, 8182 (2015)

    Article  Google Scholar 

  24. L. Zhou, D. Zhao, X.W. Lou, Adv. Mater. 24, 745 (2012)

    Article  Google Scholar 

  25. R. Jenkins, R.L. Snyder, Introduction to X-ray powder diffractometry, 138 (John Wiley & Sons Inc, New York, 1996), p. 89

    Book  Google Scholar 

  26. F. Beshkar, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Chem. Eng. J. 279, 605 (2015)

    Article  Google Scholar 

  27. M. Panahi-Kalamuei, F. Mohandes, M. Mousavi-Kamazani, M. Salavati-Niasari, Z. Fereshteh, M.H. Fathi, Mater. Sci. Semicond. Process. 27, 1028 (2014)

    Article  Google Scholar 

  28. M. Mousavi-Kamazani, M. Salavati-Niasari, M. Sadeghinia, Superlattice. Microstruct. 63, 248 (2013)

    Article  Google Scholar 

  29. R. Hoseinzadeh Hesas, A. Arami-Niya, W.M.A.W. Daud, J.N. Sahu, Chem. Eng. Res. Des. 91, 2447 (2013)

    Article  Google Scholar 

  30. J. Habjanic, M. Juric, J. Popovic, K. Molcanov, D. Pajic, Inorg. Chem. 53, 9633 (2014)

    Article  Google Scholar 

  31. M. Salavati-Niasari, D. Ghanbari, M.R. Loghman-Estarki, Polyhedron 35, 149 (2012)

    Article  Google Scholar 

  32. R.S. Manea, S.J. Roha, O.S. Joob, C.D. Lokhandec, S.H. Han, Electrochim. Acta 50, 2453 (2005)

    Article  Google Scholar 

  33. M.H. Habibi, P. Bagheri, J. Mater. Sci. Mater. Electron. (2016). doi:10.1007/s10854-016-5523-0

    Google Scholar 

  34. A.C. Dodd, A.J. McKinley, M. Saunders, T. Tsuzuki, J. Nanopart. Res. 8, 43 (2006)

    Article  Google Scholar 

  35. J. Cheng, X. Liu, Y. Lu, X. Hou, L. Han, H. Yan, J. Xu, Y. Luo, Mater. Lett. 165, 231 (2016)

    Article  Google Scholar 

  36. D. Ghanbari, M. Salavati-Niasari, S. Karimzadeh, S. Gholamrezaei, J. Nanostruct. 4, 227 (2014)

    Google Scholar 

  37. G. Nabiyouni, S. Sharifi, D. Ghanbari, M. Salavati-Niasari, J. Nanostruct. 4, 317 (2014)

    Google Scholar 

  38. M. Panahi-Kalamuei, M. Mousavi-Kamazani, M. Salavati-Niasari, J. Nanostruct. 4, 459 (2014)

    Google Scholar 

  39. F. Beshkar, M. Salavati-Niasari, J. Nanostruct. 5, 17 (2015)

    Article  Google Scholar 

  40. L. Nejati-Moghadam, A.E. Bafghi-Karimabad, M. Salavati-Niasari, H. Safardoust, J. Nanostruct. 5, 47 (2015)

    Google Scholar 

  41. M. Ghiyasiyan-Arani, M. Masjedi-Arani, M. Salavati-Niasari, J. Nanostruct. 5, 437 (2015)

    Google Scholar 

Download references

Acknowledgements

Authors are grateful to the council of Iran National Science Foundation and University of Kashan for supporting this work by Grant No (159271/6679).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Salavati-Niasari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valian, M., Beshkar, F. & Salavati-Niasari, M. Two facile methods to produce the cobalt manganite nanostructures and evaluation of their photocatalytic performance. J Mater Sci: Mater Electron 28, 6292–6300 (2017). https://doi.org/10.1007/s10854-016-6312-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6312-5

Keywords

Navigation