Skip to main content
Log in

The fabrication of Al–diamond composites for heat dissipation by liquid–solid separation technology

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Low-cost and good quality Al–diamond composites were prepared in the application of heat dissipation using an advanced liquid–solid separation technology. Their thermal conductivity (TC) and coefficient of thermal expansion (CTE) were measured, especially on the effect of diamond particle surface metallization. The TC of composites reinforced with Ni-coated diamond particles was found to have increased by almost 80 % compared to that of Al alloys. The diamond surface in the composites was characterized using an electron microprobe, X-ray diffraction and SEM. It was found that high TC of the composites was obtained due to the generation of Al4Ni3 and AlNi phases at their interfaces between Al and diamond. In addition, the theoretical calculation for TC and CTE of the composites show the similar tendency with their experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z.Y. Cai, R.C. Wang, C. Zhang, C.Q. Peng, L.Q. Wang, J. Mater. Sci. Mater. Electron. 26, 4234 (2015)

    Article  Google Scholar 

  2. M. Schöbel, H.P. Degischer, S. Vaucher, M. Hofmann, P. Cloetens, Acta Mater. 58, 6421 (2010)

    Article  Google Scholar 

  3. Q.P. Wang, F.F. Min, J.B. Zhu, J. Mater. Sci. Mater. Electron. 24, 1937 (2012)

    Article  Google Scholar 

  4. F.A. Khalid, O. Beffort, U.E. Klotz, B.A. Keller, P. Gasser, Diam. Relat. Mater. 13, 393 (2004)

    Article  Google Scholar 

  5. W. Yang, K. Peng, L. Zhou, J. Zhu, D. Li, Comput. Mater. Sci. 83, 375 (2014)

    Article  Google Scholar 

  6. P.W. Ruch, O. Beffort, S. Kleiner, L. Weber, P.J. Uggowitzer, Compos. Sci. Technol. 66, 2677 (2006)

    Article  Google Scholar 

  7. M. Caccia, A. Rodríguez, J. Narciso, JOM 66, 920 (2014)

    Article  Google Scholar 

  8. K.C. Collins, S. Chen, G. Chen, Appl. Phys. Lett. 97, 083102 (2010)

    Article  Google Scholar 

  9. H. Kwon, M. Leparoux, J.M. Heintz, J.F. Silvain, A. Kawasaki, Met. Mater. Int. 17, 755 (2011)

    Article  Google Scholar 

  10. M. Battabyal, O. Beffort, S. Kleiner, S. Vaucher, L. Rohr, Diam. Relat. Mater. 17, 1438 (2008)

    Article  Google Scholar 

  11. J. Shi, R.C. Che, C.Y. Liang, Y. Cui, S.B. Xu, L. Zhang, Compos. Part B Eng. 42, 1346 (2011)

    Article  Google Scholar 

  12. J.H. Wu, H.L. Zhang, Y. Zhang, J.W. Li, X.T. Wang, Mater. Des. 39, 87 (2012)

    Article  Google Scholar 

  13. X. Liang, C. Jia, K. Chu, H. Chen, J. Nie, W. Gao, J. Compos. Mater. 46, 1127 (2012)

    Article  Google Scholar 

  14. Z. Tan, Z. Li, G. Fan, X. Kai, G. Ji, L. Zhang, D. Zhang, Compos. Part B Eng. 47, 173 (2013)

    Article  Google Scholar 

  15. I.E. Monje, E. Louis, J.M. Molina, Compos. Part A Appl. Sci. Manuf. 67, 70 (2014)

    Article  Google Scholar 

  16. Q. Zhang, L.T. Jiang, G.H. Wu, J. Mater. Sci. Mater. Electron. 25, 604 (2014)

    Article  Google Scholar 

  17. C. Monachon, L. Weber, Diam. Relat. Mater. 39, 8 (2013)

    Article  Google Scholar 

  18. Y. Yamamoto, T. Imai, K. Tanabe, T. Tsuno, Y. Kumazawa, N. Fujimori, Diam. Relat. Mater. 6, 1057 (1997)

    Article  Google Scholar 

  19. Z.Q. Tan, Z.Q. Li, D.B. Xiong, G.L. Fan, G. Ji, D. Zhang, Mater. Des. 55, 257 (2014)

    Article  Google Scholar 

  20. Y.X. Li, J.Y. Liu, W.S. Wang, G.Q. Liu, Trans. Nonferr. Met. Soc. China 23, 970 (2013)

    Article  Google Scholar 

  21. Q.J. Jia, J.Y. Liu, Y.X. Li, W.S. Wang, Trans. Nonferr. Met. Soc. China 23, 80 (2013)

    Article  Google Scholar 

  22. O. Beffort, F.A. Khalid, L. Weber, P. Ruch, U.E. Klotz, S. Meier, S. Kleiner, Diam. Relat. Mater. 15, 1250 (2006)

    Article  Google Scholar 

  23. P.M. Geffroy, T. Chartier, J.F. Silvain, J. Eur. Ceram. Soc. 27, 291 (2007)

    Article  Google Scholar 

  24. R.J. Stoner, H.J. Maris, Phys. Rev. B Condens. Matter 48, 16373 (1994)

    Article  Google Scholar 

  25. A.M. Abyzov, F.M. Shakhov, A.I. Averkin, V.I. Nikolaev, Mater. Des. 87, 527 (2015)

    Google Scholar 

  26. J.C. Maxwell, An Elementary Treatise on Electricity, 2nd edn. (Dover Publications, New York, 2011)

    Book  Google Scholar 

  27. J.M. Molina, M. Rhême, J. Carron, L. Weber, Scr. Mater. 58, 393 (2008)

    Article  Google Scholar 

  28. R. Tavangar, J.M. Molina, L. Weber, Scr. Mater. 56, 357 (2007)

    Article  Google Scholar 

  29. M. Kida, L. Weber, C. Monachon, A. Mortensen, J. Appl. Phys. 109, 064907 (2011)

    Article  Google Scholar 

  30. D.P.H. Hasselman, J. Compos. Mater. 21, 6869 (1987)

    Article  Google Scholar 

  31. T.H. Nam, G. Requena, P. Degischer, Compos. Part A Appl. Sci. Manuf. 39, 856 (2008)

    Article  Google Scholar 

  32. B.K. Jang, J. Alloys Compd. 480, 806 (2009)

    Article  Google Scholar 

  33. E.H. Kerner, Proc. Phys. Soc. 69, 808 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Science Research Program of Beijing Municipal Commission of Education (00012125), (00012228).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junyou Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Yin, Y., Shi, Z. et al. The fabrication of Al–diamond composites for heat dissipation by liquid–solid separation technology. J Mater Sci: Mater Electron 28, 721–728 (2017). https://doi.org/10.1007/s10854-016-5582-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5582-2

Keywords

Navigation