Skip to main content
Log in

Structural and electrical characteristics of (Co, Ti) modified BiFeO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Comments to this article was published on 06 May 2022

Abstract

The present paper mainly reports the synthesis and characterization of multi-doped bismuth ferrite Bi(Co1/4Ti1/4Fe1/2)O3 (BCTF) ceramic. The polycrystalline BCTF material was synthesized at room temperature in ambient conditions using a standard high-temperature solid-state reaction technique. Room temperature structural analysis of BCTF using X-ray diffraction data shows the formation of a single-phase compound with orthorhombic structure. Average particles size, calculated from peak profile of some reflections, was found to be about 30 nm. Room temperature surface morphologies and textures of the sample, recorded by a field-emission scanning electron microscope, reveal the uniform distribution of grains on the surfaces of the sample. The co-substitution of Co2+ and Ti4+ at the Fe3+-site of BiFeO3 enhances its various properties with significant reduction of electrical leakage current. Studies of some electrical characteristics (dielectric, tangent loss, modulus and complex impedance spectroscopy) of (Co, Ti) modified BiFeO3 pellets were determined in different experimental conditions which have provided better understanding of the relaxation process and correlations between the microstructure-electrical properties relationship. Impedance and modulus plots were used as tools to analyse the frequency response on electrical characteristics of the material. Analysis of the frequency dependence of the real and imaginary impedance shows the existence of non-Debye type of relaxation in the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.S. Sverre, T. Thomas, E. Mari-Ann, G. Tor, Adv. Mater. 20, 3692–3696 (2008)

    Article  Google Scholar 

  2. D.H. Wang, W.C. Goh, M. Ning, C.K. Ong, Appl. Phys. Lett. 88, 212907 (2006)

    Article  Google Scholar 

  3. M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D. 38, R123 (2005)

    Article  Google Scholar 

  4. Y. Wang, Q. Jiang, H. He, C.W. Nan, Appl. Phys. Lett. 88, 142503-1–142503-3 (2006)

    Google Scholar 

  5. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)

    Article  Google Scholar 

  6. N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.W. Cheong, Nature 429, 392 (2004)

    Article  Google Scholar 

  7. G. Catalan, J.F. Scott, Adv. Mater. 21, 2463–2485 (2009)

    Article  Google Scholar 

  8. Z.X. Cheng, X.L. Wang, C.V. Kannan, K. Ozawa, H. Kimura, T. Nishida, S.J. Zhang, T.R. Shrout, Appl. Phys. Lett. 88, 132909 (2006)

    Article  Google Scholar 

  9. C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103, 031101 (2008)

    Article  Google Scholar 

  10. J.G. Wu, J. Wang, D.Q. Xiao, J.G. Zhu, ACS Appl. Mater. Interfaces 3, 2504–2511 (2011)

    Article  Google Scholar 

  11. V.R. Palkar, J. John, R. Pinto, Appl. Phys. Lett. 80, 1628 (2002)

    Article  Google Scholar 

  12. Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, Z.G. Liu, Appl. Phys. Lett. 84, 1731–1733 (2004)

    Article  Google Scholar 

  13. D. Kan, L. Palova, V. Anbusathaiah, C.J. Cheng, S. Fujino, V. Nagarajan, K.M. Rabe, I. Takeuchi, Adv. Funct. Mater. 20, 1108–1115 (2010)

    Article  Google Scholar 

  14. Y.P. Liu, D.C. Wu, F.F. Wei, T. Kong, H. Yu, J.P. Zhang, G.S. Cheng, CrystEngComm 14, 7189–7194 (2012)

    Article  Google Scholar 

  15. B.F. Yu, M.Y. Li, J. Wang, L. Pei, D.Y. Guo, X.Z. Zhao, J. Phys. D Appl. Phys. 41, 185401 (2008)

    Article  Google Scholar 

  16. A. Shukla, N. Kumar, C. Behera, R.N.P. Choudhary, J. Mater. Sci.: Mater. Electron. (2015). doi:10.1007/s10854-015-3877-3

    Google Scholar 

  17. S. Moshtaghi, S. Zinatloo-Ajabshir, M. Salavati-Niasari, J. Mater. Sci.: Mater. Electron. 27, 834–842 (2016)

    Google Scholar 

  18. S. Zinatloo-Ajabshir, M. Salavati-Niasari, M. Hamadanian, J. Mater. Sci.: Mater. Electron. 27, 998–1006 (2016)

    Google Scholar 

  19. S. Zinatloo-Ajabshir, M. Salavati-Niasari, J. Mater. Sci.: Mater. Electron. 26, 5812–5821 (2015)

    Google Scholar 

  20. F. Beshkar, S. Zinatloo-Ajabshir, M. Salavati-Niasari, J. Mater. Sci.: Mater. Electron. 26, 5043–5051 (2015)

    Google Scholar 

  21. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Int. J. Appl. Ceram. Technol. 13, 108–115 (2016)

    Article  Google Scholar 

  22. A. Montenero, M. Canali, G. Gnappi, D. Bersani, P.P. Lottici, P. Nunziante, E. Traversa, Appl. Organomet. Chem. 11, 137–146 (1997)

    Article  Google Scholar 

  23. X. Zhang, H. Wang, A. Huang, H. Xu, Y. Zhang, D. Yu, B. Wang, H.J. Yan, J. Mater. Sci. 38, 2353–2356 (2003)

    Article  Google Scholar 

  24. Y. Shimizu, K. Uemura, N. Miura, N. Yamzoe, Chem. Lett. 17, 1979–1982 (1988)

    Article  Google Scholar 

  25. T. Cao, Y. Li, C. Wang, C. Shao, Y. Liu, Langmuir 27, 2946–2952 (2011)

    Article  Google Scholar 

  26. B. Zielinska, E. Borowiak-Palen, R.J. Kalenczuk, Int. J. Hydrogen Energy 33, 1797–1802 (2008)

    Article  Google Scholar 

  27. X. Lin, J. Xing, W. Wang, Z. Shan, F. Xu, F. Huang, J. Phys. Chem. C 111, 18288–18293 (2007)

    Article  Google Scholar 

  28. M.I. Petrov, D.A. Balaev, K.A. Shaihutdinov, K.S. Aleksandrov, Phys. C. 341, 1863–1864 (2000)

    Article  Google Scholar 

  29. H. Wendt, G. Imarisio, J. Appl. Electrochem. 118, 1–14 (1988)

    Article  Google Scholar 

  30. K. Kidoh, K. Tanaka, F. Marumo, H. Takei, Acta Crystallogr B Struct Sci 40, 92–96 (1984)

    Article  Google Scholar 

  31. D.C. Sullivan, A.S. Pavlovic, in Proceedings of the West Virginia Academy of Science, vol. 34, p. 173 (1962)

  32. A.M. Glazer, Acta Cryst. A 31, 756–762 (1975)

    Article  Google Scholar 

  33. B. Park, An interactive powder diffraction data interpretations and indexing Program Version 2.1, E. WU School of Physical Sciences, Flinders University of South Australia, SA 5042 (1989)

  34. B.D. Cullity, Elements of X-Ray Diffraction, 2nd edn. (Addison-Wesley, Publishing Company Inc., Reading, 1978)

    Google Scholar 

  35. S. Mortazavi-Derazkola, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Ceram. Int. 41, 9593–9601 (2015)

    Article  Google Scholar 

  36. S. Mortazavi-Derazkola, S. Zinatloo-Ajabshir, M. Salavati-Niasari, RSC Adv. 5, 56666 (2015)

    Article  Google Scholar 

  37. J.C. Anderson, Dielectrics (Chapman and Hall, London, 1964)

    Google Scholar 

  38. S. Pattanayak, R.N.P. Choudhary, P.R. Das, J. Mater. Sci.: Mater. Electron. 24, 2767–2771 (2013)

    Google Scholar 

  39. K. Jawahar, R.N.P. Choudhary, Mater. Lett. 62, 911–913 (2008)

    Article  Google Scholar 

  40. J.R. Macdonald, W.B. Johnson, Impedance Spectroscopy Theory, Experiments and Applications (Wiley, Hoboken, 2005)

    Google Scholar 

  41. H. Jain, C.H. Hsieh, J. Non-Cryst. Solids 172, 1408–1412 (1994)

    Article  Google Scholar 

  42. V. Provenzano, L.P. Boesch, V. Volterra, C.T. Moynihan, P.B. Macedo, J. Am. Ceram. Soc. 55, 492–496 (1972)

    Article  Google Scholar 

  43. C.K. Suman, K. Prasad, R.N.P. Choudhary, J. Mater. Sci. 41, 369–375 (2006)

    Article  Google Scholar 

  44. A. Kumar, B.P. Singh, R.N.P. Choudhary, A.K. Thakur, Mater. Chem. Phys. 99–1, 150–159 (2006)

    Article  Google Scholar 

  45. B. Behera, P. Nayak, R.N.P. Choudhary, J. Alloys Compd. 436, 226–232 (2007)

    Article  Google Scholar 

  46. W. Wieczoreck, J. Plocharski, J. Przyluski, S. Glowinkowski, Z. Pajak, Solid State Ion. 28, 1014–1017 (1988)

    Article  Google Scholar 

  47. S.A. Ansari, A. Nisar, B. Fatma, W. Khan, A.H. Naqvi, Mater. Sci. Eng. B 177, 428–435 (2012)

    Article  Google Scholar 

  48. S. Chatterjee, P.K. Mahapatra, R.N.P. Choudhary, A.K. Thakur, Phys. Stat. Sol. 201, 588–595 (2004)

    Article  Google Scholar 

  49. J.S. Kim, J. Phys. Soc. Jpn. 70, 3129–3133 (2001)

    Article  Google Scholar 

  50. S. Sen, R.N.P. Choudhary, P. Pramanik, Phys. B 387, 56–62 (2007)

    Article  Google Scholar 

  51. I.M. Hodge, M.D. Ingram, A.R. West, J. Electroanal. Chem. 58, 429–432 (1975)

    Article  Google Scholar 

  52. A.K. Jonscher, Dielectric relaxation in solids. J. Phys. D Appl. Phys. 32, R57–R70 (1999)

    Article  Google Scholar 

  53. B. Pati, R.N.P. Choudhary, P.R. Das, J. Alloys Comp. 579, 218–226 (2013)

    Article  Google Scholar 

  54. S. Dash, R.N.P. Choudhary, A. Kumar, J. Phys. Chem. Sol. 75, 1376–1382 (2014)

    Article  Google Scholar 

  55. N.K. Karan, D.K. Pradhan, R. Thomas, B. Natesan, R.S. Katiyar, Solid State Ion. 179, 689–696 (2008)

    Article  Google Scholar 

  56. R. Mizaras, M. Takashige, J. Banys, S. Kojima, J. Grigas, S.I. Hamazaki, J. Phys. Soc. Jpn. 66, 2881–2885 (1997)

    Article  Google Scholar 

  57. A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673–679 (1977)

    Article  Google Scholar 

  58. D.C. Sinclair, J. Appl. Phys. 66, 3850 (1989)

    Article  Google Scholar 

Download references

Acknowledgments

Authors are grateful to IIT Guwahati for some experimental works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, A., Kumar, N., Behera, C. et al. Structural and electrical characteristics of (Co, Ti) modified BiFeO3 . J Mater Sci: Mater Electron 27, 7115–7123 (2016). https://doi.org/10.1007/s10854-016-4674-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4674-3

Keywords

Navigation