Skip to main content
Log in

Synergetic effect of hexagonal nitride nanopowder and graphene nanosheets on thermal and electrical conductivity of the hBN/GNs/CE resin nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the study, two kinds of nanomaterials [hexagonal nitride nanopowder (hBN) and graphene nanosheets (GNs)] were chosen as resin fillers due to their similar structures and excellent thermal properties. The hBN/CE, GNs/CE and hBN/GNs/CE resin nanocomposites with different hBN and/or GNs contents were prepared by a solution blended method. The structures of hBN and GNs, thermal and electrical conductivities, and thermal properties of the hBN/CE, GNs/CE and hBN/GNs/CE resin nanocomposites were observed with different test instruments. The results showed that the hBN had an analogous structure with GNs. The addition of hBN and GNs in the CE resin made the fractural surfaces of the resin nanocomposites rougher and more fold than that of the pure CE resin. For thermal conductivity, the synergistic effect of the hBN and GNs in the CE resin nanocomposites was better than the hBN or GNs filling the CE resin alone. The thermal diffusivity of GNs was good, meanwhile, the electrical conductivity of GNs was excellent as well. It indicated that the electrical conductivity of the GNs/CE resin nanocomposites was higher than that of the hBN/GNs/CE resin nanocomposites at a given volume contents. The data calculated from the TGA test was roughly corresponding to the experimental hBN and GNs volume content of the hBN/GNs/CE resin nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.S. Jeng, Microelectron. Eng. 149, 1 (2016)

    Article  Google Scholar 

  2. F. Ye, Z. Ge, Y. Ding, J. Yang, Particuology 15, 56 (2014)

    Article  Google Scholar 

  3. M.K. Kim, B. Lee, M.Y. Koo, H.J. Ryu, S.H. Hong, Mater. Des. 86, 1 (2015)

    Google Scholar 

  4. Y.K. Shin, W.S. Lee, M.J. Yoo, E.S. Kim, Ceram. Int. 39, 569 (2013)

    Article  Google Scholar 

  5. W. Dai, J. Yu, Z. Liu, Y. Wang, Y. Song, J. Lyu, H. Bai, Compos. Part A Appl. Sci. 76, 73 (2015)

    Article  Google Scholar 

  6. Z.Y. Liu, B.L. Xiao, W.G. Wang, Z.Y. Ma, J. Mater. Sci. Technol. 30, 649 (2014)

    Article  Google Scholar 

  7. A. Trapalis, N. Todorova, T. Giannakopoulou, N. Boukos, Appl. Catal. B Environ. 180, 637 (2016)

    Article  Google Scholar 

  8. R. Gusain, P. Kumar, O.P. Sharma, S.L. Jain, O.P. Khatri, Appl. Catal. B Environ. 181, 352 (2016)

    Article  Google Scholar 

  9. W. Ye, J. Yu, Y. Zhou, D. Gao, D. Wang, C. Wang, D. Xue, Appl. Catal. B Environ. 181, 371 (2016)

    Article  Google Scholar 

  10. W. Zou, L. Zhang, L. Liu, X. Wang, J. Sun, S. Wu, Appl. Catal. B Environ. 181, 495 (2016)

    Article  Google Scholar 

  11. Z. Wang, D. Tonderys, S.E. Leggett, E.K. Williams, M.T. Kiani, Carbon 97, 14 (2016)

    Article  Google Scholar 

  12. C.M. Hadden, D.R. Klimek-McDonald, E.J. Pineda, J.A. King, Carbon 95, 100 (2015)

    Article  Google Scholar 

  13. Y.R. Son, K.Y. Rhee, S.J. Park, Compos. Part B Eng. 83, 36 (2015)

    Article  Google Scholar 

  14. R. Guo, W. Yue, Y. Ren, W. Zhou, Mater. Res. Bull. 73, 102 (2016)

    Article  Google Scholar 

  15. S.H. Kim, V.D. Dao, L.L. Larina, K.D. Jung, H.S. Choi, Chem. Eng. J. 283, 1285 (2016)

    Article  Google Scholar 

  16. B. Yang, P. Chen, X. Zuo, L. Zhou, X. Yang, G. Li, M. Wu, Y. Ma, Appl. Surf. Sci. 353, 300 (2015)

    Article  Google Scholar 

  17. H.J. Wu, G.L. Wu, Q.F. Wu, L.D. Wang, Mater. Charact. 97, 18 (2014)

    Article  Google Scholar 

  18. J.Y. Hong, E.H. Sohn, S. Park, H.S. Park, Chem. Eng. J. 269, 229 (2015)

    Article  Google Scholar 

  19. H.J. Wu, G.L. Wu, L.D. Wang, Powder Technol. 269, 443 (2015)

    Article  Google Scholar 

  20. M. Zong, Y. Huang, N. Zhang, H. Wu, J. Alloys Compd. 644, 491 (2015)

    Article  Google Scholar 

  21. H.J. Wu, G.L. Wu, Y.Y. Ren, L. Yang, J. Mater. Chem. C 3, 7677 (2015)

    Article  Google Scholar 

  22. Y. Wang, Y. Huang, J. Ding, Mater. Sci. Semicond. Process. 26, 632 (2014)

    Article  Google Scholar 

  23. G.L. Wu, Y.H. Cheng, Y.Y. Ren, Y.Q. Wang, J. Alloys Compd. 652, 346 (2015)

    Article  Google Scholar 

  24. G.L. Wu, Y.H. Cheng, F. Xiang, Z.R. Jia, Mater. Sci. Semicond. Process. 41, 6 (2016)

    Article  Google Scholar 

  25. G.L. Wu, Y.H. Cheng, Q. Xie, Z.R. Jia, F. Xiang, H.J. Wu, Mater. Lett. 144, 157 (2015)

    Article  Google Scholar 

  26. Z. Zhang, R. Cai, F. Long, J. Wang, Talanta 134, 435 (2015)

    Article  Google Scholar 

  27. J. Xu, L. Wang, X. Cao, Chem. Eng. J. 283, 816 (2016)

    Article  Google Scholar 

  28. N. Hui, S. Wang, H. Xie, S. Xu, S. Niu, X. Luo, Sens. Actuatuators. B Chem. 221, 606 (2015)

    Article  Google Scholar 

  29. M. Pacella, P.W. Butler-Smith, D.A. Axinte, M.W. Fay, Diam. Relat. Mater. 59, 62 (2015)

    Article  Google Scholar 

  30. A. Tabarraei, Comput. Mater. Sci. 108, 66 (2015)

    Article  Google Scholar 

  31. Y.Q. Wang, K.C. Kou, W. Zhao, G.L. Wu, F.L. Han, RSC Adv. 5, 99313 (2015)

    Article  Google Scholar 

  32. S. Rakesh, C.P. Sakthidharan, M. Sarojadevi, P.R. Sundararajan, Eur. Polym. J. 68, 161 (2015)

    Article  Google Scholar 

  33. G.L. Wu, Y.H. Cheng, Q. Xie, C. Liu, J. Polym. Res. 21, 615 (2014)

    Article  Google Scholar 

  34. J. Li, Z. Wu, C. Huang, L. Li, Fusion Eng. Des. 89, 3112 (2014)

    Article  Google Scholar 

  35. G.L. Wu, K.C. Kou, M. Chao, L.H. Zhuo, Thermochim. Acta 537, 44 (2012)

    Article  Google Scholar 

  36. J. Li, Z. Wu, C. Huang, L. Li, Compos. Sci. Technol. 104, 81 (2014)

    Article  Google Scholar 

  37. J.K.T. Giang, J. Ind. Eng. Chem. 30, 77 (2015)

    Article  Google Scholar 

  38. C. Zeng, X. Y. Huang, P. K. Jiang. J. Phys. Chem. C 116, 23812 (2012)

    Article  Google Scholar 

  39. P. Cai, Y. Wang, T. Wang, Q. Wang, Tribol. Int. 87, 1 (2015)

    Article  Google Scholar 

  40. E. Kollia, T. Loutas, E. Fiamegkou, A. Vavouliotis, Polym. Degrad. Stab. 121, 200 (2015)

    Article  Google Scholar 

  41. G.L. Wu, K.C. Kou, L.H. Zhuo, Y.Q. Wang, J.Q. Zhang, Thermochim. Acta 559, 86 (2013)

    Article  Google Scholar 

  42. G.L. Wu, K.C. Kou, M. Chao, L.H. Zhuo, J. Wuhan Univ. Technol. Mater. Sci. Edit. 28, 261 (2013)

    Article  Google Scholar 

  43. Y.Q. Wang, K.C. Kou, G.L. Wu, L.H. Zhuo, Polymer 77, 354 (2015)

    Article  Google Scholar 

  44. Y. Huang, J. Ding, T.Z. Han, Y.L. Wang, High Perform. Polym. 8, 1 (2015)

    Google Scholar 

  45. Y.Q. Wang, K.C. Kou, G.L. Wu, A.L. Feng, L.H. Zhuo, RSC Adv. 5, 58821 (2015)

    Article  Google Scholar 

  46. G.L. Wu, K.C. Kou, N. Li, H.L. Shi, M. Chao, J. Appl. Polym. Sci. 128, 1164 (2013)

    Article  Google Scholar 

  47. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  48. A. Tabarraei, X. Wang, Mater. Sci. Eng. A 641, 225 (2015)

    Article  Google Scholar 

  49. H.M.K. Wattanakul, N. Yanumet, Colloids Surf. A Physicochem. Eng. Asp. 369, 203 (2010)

    Article  Google Scholar 

  50. Y.H. Zhao, Y.F. Zhang, Z.K. Wu, S.L. Bai, Compos. Part B Eng. 84, 52 (2016)

    Article  Google Scholar 

  51. Y.C. Chen, S.C. Lee, T.H. Liu, C.C. Chang, Int. J. Therm. Sci. 94, 72 (2015)

    Article  Google Scholar 

  52. A.J. Gu, C.F. Han, G.Z. Liang, L. Yuan, Compos. Part A Appl. Sci. 41, 1321 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Ding or Ying Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Huang, Y., Sun, X. et al. Synergetic effect of hexagonal nitride nanopowder and graphene nanosheets on thermal and electrical conductivity of the hBN/GNs/CE resin nanocomposites. J Mater Sci: Mater Electron 27, 6216–6222 (2016). https://doi.org/10.1007/s10854-016-4552-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4552-z

Keywords

Navigation