Skip to main content
Log in

Facile chemical synthesis of cobalt tungstates nanoparticles as high performance supercapacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cobalt tungstate (CoWO4) nanoparticles were synthesized by a chemical precipitation reaction in aqueous ambient involving direct addition of cobalt ion solution to the solution of tungstate reagent. Optimization of the synthesis procedure was carried out using Taguchi robust design as statistical method. In order to controllable, simple and fast synthesis of CoWO4 nanoparticles, effects of some synthesis conditions such as reagents concentrations (i.e., cobalt and tungstate ions), flow rate of cobalt feeding and temperature of the reactor on the particle size of synthesized CoWO4 were investigated by the aid of an orthogonal array (OA9). The results of optimization process showed that CoWO4 nanoparticles could be prepared by controlling the effective parameters and at optimum conditions of synthesis procedure, the size of prepared CoWO4 particles was about 55 nm. Chemical composition and microstructure of the prepared CoWO4 nanoparticles were characterized by means of XRD, SEM, TEM, FT-IR spectroscopy, UV–Vis spectroscopy and fluorescence. The supercapacitive behavior of the CoWO4 electrode has been investigated by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. The CoWO4 electrode indicates high specific capacitance of 378 F g−1 at scan rate of 2 mV s−1 in 2.0 M H2SO4 electrolyte. Therefore, the prepared electrode could be potential electrode materials for supercapacitors. Moreover, an excellent rate performance, good capacitance retention (~95.5 %) was also observed during the continuous 4000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer Academic/Plenum, New York, 1999)

    Book  Google Scholar 

  2. J. Yan, Q. Wang, T. Wei, Z. Fan, Adv. Energy Mater. 4, 1 (2013)

    Google Scholar 

  3. H. Luo, F. Zhang, X. Zhao, Y. Sun, K. Du, H. Feng, J. Mater. Sci. Mater. Electron. 25, 538 (2014)

    Article  Google Scholar 

  4. L. Yang, M. Li, Y. Zhang, K. Yi, J. Ma, Y. Liu, J. Mater. Sci. Mater. Electron. 25, 1047 (2014)

    Article  Google Scholar 

  5. A.G. Pandolfo, A.F. Hollenkamp, J. Power Sources 157, 11 (2006)

    Article  Google Scholar 

  6. M. Li, Y. Zhang, L. Yang, Y. Liu, J. Ma, J. Mater. Sci. Mater. Electron. 26, 485 (2015)

    Article  Google Scholar 

  7. C.D. Lokhande, D.P. Dubal, O. Joo, Curr. Appl. Phys. 11, 255 (2011)

    Article  Google Scholar 

  8. M. Mastragostino, C. Arbizzani, F. Soavi, J. Power Sources 98, 812 (2001)

    Article  Google Scholar 

  9. V.S. Kumbhar, A.D. Jagadale, N.M. Shinde, C.D. Lokhande, Appl. Surf. Sci. 259, 39 (2012)

    Article  Google Scholar 

  10. S.L. Kuo, J.F. Lee, N.L. Wu, J. Electrochem. Soc. 154, A34 (2007)

    Article  Google Scholar 

  11. U. Nithiyanantham, S.R. Ede, S. Anantharaj, S. Kundu, Cryst. Growth Des. 15, 673 (2015)

    Article  Google Scholar 

  12. S.R. Ede, A. Ramadoss, U. Nithiyanantham, S. Anantharaj, S. Kundu, Inorg. Chem. 54, 3851 (2015)

    Article  Google Scholar 

  13. S.R. Ede, S. Kundu, ACS Sustain. Chem. Eng. 3, 2321 (2015)

    Article  Google Scholar 

  14. U. Nithiyanantham, S.R. Ede, T. Kesavan, P. Ragupathy, M.D. Mukadam, S.M. Yusuf, S. Kundu, RSC Adv. 4, 38169 (2014)

    Article  Google Scholar 

  15. X. Xing, Y. Gui, G. Zhang, C. Song, Electrochim. Acta 157, 15 (2015)

    Article  Google Scholar 

  16. B. Guan, L. Hu, G. Zhang, D. Guo, T. Fu, J. Li, H. Duan, C. Li, Q. Li, RSC Adv. 4, 4212 (2014)

    Article  Google Scholar 

  17. S.M. Pourmortazavi, M. Rahimi-Nasrabadi, M. Khalilian-Shalamzari, M.M. Zahedi, S.S. Hajimirsadeghi, I. Omrani, Appl. Surf. Sci. 263, 745 (2012)

    Article  Google Scholar 

  18. S.M. Pourmortazavi, M. Rahimi-Nasrabadi, Y. Fazli, M. Mohammad-Zadeh, Int. J. Refract. Met. Hard Mater. 51, 29 (2015)

    Article  Google Scholar 

  19. Z. Song, J. Ma, H. Sun, Y. Sun, J. Fang, Z. Liu, C. Gao, Y. Liu, J. Zhao, Mater. Sci. Eng. B 163, 62 (2009)

    Article  Google Scholar 

  20. S. Rajagopal, D. Nataraj, OYu. Khyzhun, Y. Djaoued, J. Robichaud, D. Mangalaraj, J. Alloys Compd. 493, 340 (2010)

    Article  Google Scholar 

  21. S. Thongtem, S. Wannapop, T. Thongtem, Ceram. Int. 35, 2087 (2009)

    Article  Google Scholar 

  22. A. Sen, P. Pramani, J. Eur. Ceram. Soc. 21, 745 (2001)

    Article  Google Scholar 

  23. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M.R. Ganjali, Mater. Manuf. Process. 30, 34 (2015)

    Article  Google Scholar 

  24. S.M. Pourmortazavi, M. Rahimi-Nasrabadi, M. Khalilian-Shalamzari, H.R. Ghaeni, S.S. Hajimirsadeghi, J. Inorg. Organomet. Polym. Mater. 24, 333 (2014)

    Article  Google Scholar 

  25. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M.R. Ganjali, A.R. Banan, F. Ahmadi, J. Mol. Struct. 1074, 85 (2014)

    Article  Google Scholar 

  26. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M. Khalilian-Shalamzari, S.S. Hajimirsadeghi, M.M. Zahedi, Cent. Eur. J. Chem. 11, 1393 (2013)

    Google Scholar 

  27. S.M. Pourmortazavi, M. Rahimi-Nasrabadi, A.A. Davoudi-Dehaghani, A. Javidan, M.M. Zahedi, S.S. Hajimirsadeghi, Mater. Res. Bull. 47, 1045 (2012)

    Article  Google Scholar 

  28. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, A.A. Davoudi-Dehaghani, S.S. Hajimirsadeghi, M.M. Zahedi, Cryst. Eng. Commun. 15, 4077 (2013)

    Article  Google Scholar 

  29. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M. Khalilian-Shalamzari, J. Mol. Struct. 1083, 229 (2015)

    Article  Google Scholar 

  30. Mehdi Rahimi-Nasrabadi, Mohsen Behpour, Ali Sobhani-Nasab, S. Mostafa Hosseinpour-Mashkani, J. Mater. Sci. Mater. Electron. 26, 9776 (2015)

    Article  Google Scholar 

  31. M. Rahimi-Nasarabadi, J. Nanostruct. 4, 211 (2014)

    Google Scholar 

  32. H.R. Naderi, H.R. Mortaheb, A. Zolfaghari, J. Electroanal. Chem. 719, 98 (2014)

    Article  Google Scholar 

  33. A. Zolfaghari, H.R. Naderi, H.R. Mortaheb, Electroanal. Chem. 697, 60 (2013)

    Article  Google Scholar 

  34. A.S. Dezfuli, M.R. Ganjali, H.R. Naderi, P. Norouzi, RSC Adv. 5, 46050 (2015)

    Article  Google Scholar 

Download references

Funding

The authors are gratefully acknowledged the financial support provided by Iran National Science Foundation (Project 94019559).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Rahimi-Nasrabadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adib, K., Rahimi-Nasrabadi, M., Rezvani, Z. et al. Facile chemical synthesis of cobalt tungstates nanoparticles as high performance supercapacitor. J Mater Sci: Mater Electron 27, 4541–4550 (2016). https://doi.org/10.1007/s10854-016-4329-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4329-4

Keywords

Navigation