Skip to main content
Log in

Charge carrier transport through 3D assemblies of zincblende CdSe and ZnSe quantum dots in weak size-quantization regime

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The mechanism of charge carrier transport through 3D assemblies of ZnSe and CdSe quantum dots with zincblende structure in weak size-quantization regime was investigated. The Debye length in the case of ZnSe QDs was found to be 11.5 nm, i.e. almost three times larger than the average diameter of the nanocrystals constituting the films annealed at 250 °C. In CdSe QDs, on the other hand, the Debye’s length of 11.8 nm was almost twice smaller than the average crystal diameter in the films annealed at 300 °C. In the case of ZnSe QD assemblies, it was found that the predominant mechanism governing the charge carrier transport in temperature range from 380 to 650 K is the thermionic emission, with the trap levels taking part in the formation of crystal boundary barrier being located above the Fermi level. Combining temperature-dependent conductivity data with the data from optical absorption studies, the actual position of the trap level was estimated to be at about 0.37 eV (referred to the intrinsic Fermi level at the interface). In contrast to the case of ZnSe, the temperature dependence of conductivity in the case of thin films composed by 3D assemblies of CdSe QDs appeared to be much more complex. In the highest temperature region in which the temperature-dependent conductivity measurements were performed for this system (from 480 to 540 K), it was found that the thermally activated band-to-band electronic transitions govern the conductivity changes, the corresponding thermal band gap energy being 1.85 eV. In the lower-temperature region, down to 300 K, the thermionic emission was found to be predominant charge carrier transport mechanism, with trap levels being positioned above the Fermi level. The two detected trap levels were found to be located at 0.46 and 0.79 eV, corresponding to the measured conductivity activation energies of 0.84 and 0.51 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.W. Orton, M.J. Powell, Rep. Prog. Phys. 43, 1263 (1980)

    Article  Google Scholar 

  2. P.C. Mathur, A.K. Shukla, R.P. Sharma, P.K. Goyal, J. Electron. Mater. 12, 483 (1983)

    Article  Google Scholar 

  3. T.H. Myers, S.W. Edwards, J.F. Schetzina, J. Appl. Phys. 52, 4231 (1981)

    Article  Google Scholar 

  4. R.P. Sharma, A.K. Shukla, A.K. Kapoor, R. Srivastava, P.C. Mathur, J. Appl. Phys. 57, 2026 (1985)

    Article  Google Scholar 

  5. P.Y. Yu, M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 1999)

    Book  Google Scholar 

  6. Y. Wang, N. Herron, J. Phys. Chem. 95, 525 (1991)

    Article  Google Scholar 

  7. C.R. Kagan, C.B. Murray, M. Nirmal, M.G. Bawendi, Phys. Rev. Lett. 76, 1517 (1996)

    Article  Google Scholar 

  8. C.R. Kagan, C.B. Murray, M.G. Bawendi, Phys. Rev. B 54, 8633 (1996)

    Article  Google Scholar 

  9. F. Gindele, R. Westphäling, U. Woggon, L. Spanhel, V. Ptatschek, Appl. Phys. Lett. 71, 2181 (1997)

    Article  Google Scholar 

  10. M.V. Artemyev, A.I. Bibik, L.I. Gurinovich, S.V. Gaponenko, U. Woggon, Phys. Rev. B 60, 1504 (1999)

    Article  Google Scholar 

  11. M.V. Artemyev, U. Woggon, H. Jaschinski, L.I. Gurinovich, S.V. Gaponenko, J. Phys. Chem. B 104, 11617 (2000)

    Article  Google Scholar 

  12. M.V. Artemyev, A.I. Bibik, L.I. Gurinovich, S.V. Gaponenko, H. Jaschinski, U. Woggon, Phys. Status Solidi B 224, 393 (2001)

    Article  Google Scholar 

  13. B.S. Kim, M.A. Islam, L.E. Brus, I.P. Herman, J. Appl. Phys. 89, 8127 (2001)

    Article  Google Scholar 

  14. D.E. Kim, M.A. Islam, L. Avila, I.P. Herman, J. Phys. Chem. B 107, 6318 (2003)

    Article  Google Scholar 

  15. U. Landman, W.D. Luedtke, Faraday Discuss. 124, 1 (2004)

    Article  Google Scholar 

  16. A.D. Yoffe, Adv. Phys. 51, 799 (2002)

    Article  Google Scholar 

  17. C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chem. Rev. 105, 1025 (2005)

    Article  Google Scholar 

  18. K. Seeger, Semiconductor Physics (Springer, New York, 1997)

    Book  Google Scholar 

  19. R. Dalven, Introduction to Applied Solid State Physics (Plenum Press, New York, 1990)

    Book  Google Scholar 

  20. S.M. Sze, Semiconductor Devices, Physics and Technology (Wiley, New York, 1985)

    Google Scholar 

  21. J.Y.W. Seto, J. Appl. Phys. 46, 5247 (1975)

    Article  Google Scholar 

  22. R.P. Sharma, A.K. Shukla, A.K. Kapoor, R. Srivastava, P.C. Mathur, J. Appl. Phys. 57, 2026 (1985)

    Article  Google Scholar 

  23. G. Baccarani, B. Riccò, G. Spadini, J. Appl. Phys. 49, 5565 (1978)

    Article  Google Scholar 

  24. D.S. Ginger, N.C. Greenham, J. Appl. Phys. 87, 1361 (2000)

    Article  Google Scholar 

  25. J.W. Orton, B.J. Goldsmith, M.J. Powell, J.A. Chapman, Appl. Phys. Lett. 37, 557 (1980)

    Article  Google Scholar 

  26. N.F. Mott, J. Non-cryst. Solids 8–10, 1 (1972)

    Article  Google Scholar 

  27. J.W. Orton, B.J. Goldsmith, J.A. Chapman, M.J. Powell, J. Appl. Phys. 53, 1602 (1982)

    Article  Google Scholar 

  28. C.-L. Shieh, S. Wagner, L.L. Kazmerski, Mater. Lett. 3, 415 (1985)

    Article  Google Scholar 

  29. L.L. Kazmerski, J. Vac. Sci. Technol. 20, 423 (1982)

    Article  Google Scholar 

  30. L.L. Kazmerski, Y.J. Juang, J. Vac. Sci. Technol. 14, 769 (1977)

    Article  Google Scholar 

  31. L.L. Kazmerski, M.S. Ayyagari, G.A. Sanborn, J. Appl. Phys. 46, 4865 (1975)

    Article  Google Scholar 

  32. L.L. Kazmerski, M.S. Ayyagari, F.R. White, G.A. Sanborn, J. Vac. Sci. Technol. 13, 139 (1976)

    Article  Google Scholar 

  33. L.L. Kazmerski, C.C. Shieh, Thin Solid Films 41, 35 (1977)

    Article  Google Scholar 

  34. L.L. Kazmerski, D.M. Racine, Thin Solid Films 30, L19 (1975)

    Article  Google Scholar 

  35. L.L. Kazmerski, W.B. Berry, C.W. Allen, J. Appl. Phys. 43, 3515 (1972)

    Article  Google Scholar 

  36. L.L. Kazmerski, W.B. Berry, C.W. Allen, J. Appl. Phys. 43, 3521 (1972)

    Article  Google Scholar 

  37. M.V. Garcia-Cuenca, J.L. Morenza, J. Esteve, J. Appl. Phys. 56, 1738 (1984)

    Article  Google Scholar 

  38. I. Balberg, J. Appl. Phys. 110, 061301 (2011)

    Article  Google Scholar 

  39. M. Manheller, S. Karthäuser, R. Waser, K. Blech, U. Simon, J. Phys. Chem. C 116, 20657 (2012)

    Article  Google Scholar 

  40. V.P. Kunets, M.R.S. Dias, T. Rembert, M.E. Ware, YuI Mazur, V. Lopez-Richard, H.A. Mantooth, G.E. Marques, G.J. Salamo, J. Appl. Phys. 113, 183709 (2013)

    Article  Google Scholar 

  41. H. Lepage, A. Kaminski-Cachopo, A. Poncet, G. le Carval, J. Phys. Chem. C 116, 10873 (2012)

    Article  Google Scholar 

  42. B. Pejova, I. Bineva, J. Phys. Chem. C 117, 7303 (2013)

    Article  Google Scholar 

  43. B. Pejova, I. Grozdanov, D. Nesheva, A. Petrova, Chem. Mater. 20, 2551 (2008)

    Article  Google Scholar 

  44. B. Pejova, A. Tanuševski, J. Phys. Chem. C 112, 3525 (2008)

    Article  Google Scholar 

  45. B. Pejova, B. Abay, J. Phys. Chem. C 115, 23241 (2011)

    Article  Google Scholar 

  46. B. Pejova, D. Nesheva, Z. Aneva, A. Petrova, J. Phys. Chem. C 115, 37 (2011)

    Article  Google Scholar 

  47. B. Pejova, J. Phys. Chem. C 117, 19689 (2013)

    Article  Google Scholar 

  48. B. Pejova, J. Solid State Chem. 207, 147 (2013)

    Article  Google Scholar 

  49. B. Pejova, A. Tanuševski, I. Grozdanov, J. Solid State Chem. 172, 381 (2003)

    Article  Google Scholar 

  50. B. Pejova, A. Tanuševski, I. Grozdanov, J. Solid State Chem. 174, 276 (2003)

    Article  Google Scholar 

  51. B. Pejova, I. Grozdanov, Mater. Lett. 58, 666 (2004)

    Article  Google Scholar 

  52. B. Pejova, A. Tanuševski, I. Grozdanov, J. Solid State Chem. 177, 4785 (2004)

    Article  Google Scholar 

  53. B. Pejova, Mater. Chem. Phys. 119, 367 (2010)

    Article  Google Scholar 

  54. B. Pejova, B. Abay, I. Bineva, J. Phys. Chem. C 114, 15280 (2010)

    Article  Google Scholar 

  55. B. Pejova, I. Grozdanov, Mater. Chem. Phys. 90, 35 (2005)

    Article  Google Scholar 

  56. H. Hofmeister, D. Nesheva, Z. Levi, S. Hopfe, S. Matthias, in Proceedings of EUREM 12, Brno, Czechoslovak Society for Electron Microscopy, Brno, 2009, ed. by C. L. Frank, F. Ciampor, p. 365

  57. A. Earnshaw, N. Greenwood, Chemistry of the Elements, 2nd edn. (Elsevier, Amsterdam, 2005)

    Google Scholar 

  58. Handbook of Chemistry and Physics, 64th edn. (CRC Press, 1983–1984)

  59. S. Gorer, G. Hodes, J. Phys. Chem. 98, 5338 (1994)

    Article  Google Scholar 

  60. M.T. Weller, Inorganic Materials Chemistry (Oxford University Press, Oxford, 1997)

    Google Scholar 

  61. P. Atkins, J. De Paula, Atkins’ Physical Chemistry, 8th edn. (Oxford University Press, Oxford, 2006)

    Google Scholar 

  62. C.F. Klingshirin, Semiconductor Optics (Springer, Berlin, 1997)

    Google Scholar 

  63. P.Y. Yu, M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 1999)

    Book  Google Scholar 

  64. M.A. Lampert, Injection Currents in Solids (Academic Press, New York, 1965)

    Google Scholar 

  65. M.V. Garcia-Cuenca, J.L. Morenza, J. Esteve, J. Appl. Phys. 56, 1738 (1984)

    Article  Google Scholar 

  66. A. B. Novoselova (ed.), Physical and Chemical Properties of Semiconductors—Handbook (Moscow, 1978)

  67. P. Gupta, S. Chaudhuri, A.K. Pal, J. Phys. D Appl. Phys. 26, 1709 (1993)

    Article  Google Scholar 

  68. I. Günal, M. Parlak, J. Mater. Sci. Mater. Electron. 8, 9 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

This study has been supported under the bilateral agreement between the Bulgarian Academy of Sciences and Macedonian Academy of Sciences and Arts, Project “Investigation of the surface morphology of nanostructured thin films by scanning probe microscopy”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biljana Pejova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pejova, B., Bineva, I. Charge carrier transport through 3D assemblies of zincblende CdSe and ZnSe quantum dots in weak size-quantization regime. J Mater Sci: Mater Electron 26, 4944–4955 (2015). https://doi.org/10.1007/s10854-015-3006-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3006-3

Keywords

Navigation