Skip to main content
Log in

Dielectric and ferroelectric properties of xBaZr0.52Ti0.48O3–(1−x)BiFeO3 solid solution ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

xBaZr0.52Ti0.48O3–(1−x)BiFeO3 (short for xBZT–(1−x)BFO) solid solution ceramics were synthesized by conventional solid state reaction method. The microstructure, dielectric and ferroelectric properties of xBZT–(1−x)BFO (x = 0.2–0.5) solid solution ceramics have been investigated systematically. The XRD results show that the crystal structure of xBZT–(1−x)BFO solid solution ceramics evolves gradually from rhombohedral to tetragonal phase and the lattice parameters increase as BZT content increases. The grain size of xBZT–(1−x)BFO ceramics increases initially to the maximum (x = 0.3) and then decreases with the increase of BZT content. As BZT content increases, the temperature at which the maximum in the dielectric constant appears and the corresponding maximum dielectric constant increase first and then decrease. There is obvious frequency dispersion and diffuse phase transition in xBZT–(1−x)BFO solid solution ceramics, and the dielectric diffuseness is enhanced by a certain amount of BZT. As BZT content increases, the leakage current density of xBZT–(1−x)BFO ceramics increases first and then decreases, while the remnant polarization and coercive field decrease initially by a large margin and then increase. Moreover, the remnant polarization and coercive field decrease as frequency increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.W. Cheong, M. Mostovoy, Nat. Mater. 6, 13 (2007)

    Article  Google Scholar 

  2. K.F. Wang, J.M. Liu, Z.F. Ren, Adv. Phys. 58, 321 (2009)

    Article  Google Scholar 

  3. M.E. Castillo, V.V. Shvartsman, D. Gobeljic, Y. Gao, J. Landers, H. Wende, D.C. Lupascu, Nanotechnology 24, 355701 (2013)

    Article  Google Scholar 

  4. Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, Z.G. Liu, Appl. Phys. Lett. 84, 1731 (2004)

    Article  Google Scholar 

  5. Z.H. Dai, Y. Akishige, J. Phys. D Appl. Phys. 43, 445403 (2010)

    Article  Google Scholar 

  6. W. Cai, C.L. Fu, W.G. Hu, G. Chen, X.L. Deng, J. Alloy. Compd. 554, 64 (2013)

    Article  Google Scholar 

  7. E.C. Aguiar, M.A. Ramirez, F. Moura, J.A. Varela, E. Longo, A.Z. Simões, Ceram. Int. 39, 13 (2013)

    Article  Google Scholar 

  8. P. Kumar, M. Kar, J. Alloy. Compd. 584, 566 (2014)

    Article  Google Scholar 

  9. V.V. Lazenka, M. Lorenz, H. Modarresi, K. Brachwitz, P. Schwinkendorf, T. Böntgen, J. Vanacken, M. Ziese, M. Grundmann, V.V. Moshchalkov, J. Phys. D Appl. Phys. 46, 175006 (2013)

    Article  Google Scholar 

  10. Y.P. Jiang, X.G. Tang, Q.X. Liu, D.G. Chen, C.B. Ma, J. Mater. Sci: Mater. Electron. 25, 495 (2014)

    Google Scholar 

  11. S. Pattanayak, R.N.P. Choudhary, D. Pattanayak, J. Mater. Sci: Mater. Electron. 25, 3854 (2014)

    Google Scholar 

  12. Y.X. Wei, X.T. Wang, J.T. Zhu, X.L. Wang, J.J. Jia, J. Am. Ceram. Soc. 96, 3163 (2013)

    Google Scholar 

  13. C. Behera, R.N.P. Choudhary, R.P. Das, J. Mater. Sci: Mater. Electron. 25, 2086 (2014)

    Google Scholar 

  14. V. Kothai, A. Senyshyn, R. Ranjan, J. Appl. Phys. 113, 084102 (2013)

    Article  Google Scholar 

  15. J. Bennett, A.J. Bell, T.J. Stevenson, T.P. Comyn, Scripta Mater. 68, 491 (2013)

    Article  Google Scholar 

  16. J.J. Zhou, J.F. Li, X.W. Zhang, J. Mater. Sci. 47, 1767 (2012)

    Article  Google Scholar 

  17. Z.M. Tian, Y.S. Zhang, S.L. Yuan, M.S. Wu, C.H. Wang, Z.Z. Ma, S.X. Huo, H.N. Duan, Mater. Sci. Eng., B 177, 74 (2012)

    Article  Google Scholar 

  18. S. Parida, S.K. Rout, L.S. Cavalcante, A.Z. Simões, P.K. Barhai, N.C. Batista, E. Longo, M. Siu Li, S.K. Sharma, Mater. Chem. Phys. 142, 70 (2013)

    Article  Google Scholar 

  19. P.A. Jha, P.K. Jha, A.K. Jha, R.K. Dwivedi, Mater. Res. Bull. 48, 101 (2013)

    Article  Google Scholar 

  20. P.A. Jha, P.K. Jha, A.K. Jha, R.K. Kotnala, R.K. Dwivedi, J. Alloy. Compd. 600, 186 (2014)

    Article  Google Scholar 

  21. R.N.P. Choudhary, K. Perez, P. Bhattacharya, R.S. Katiyar, Mater. Chem. Phys. 105, 286 (2007)

    Article  Google Scholar 

  22. D.Y. Liang, X.H. Zhu, J.L. Zhu, J.G. Zhu, D.Q. Xiao, Ceram. Int. 40, 2585 (2014)

    Article  Google Scholar 

  23. C.E. Ciomaga, M.T. Buscaglia, V. Buscaglia, L. Mitoseriu, J. Appl. Phys. 110, 114110 (2011)

    Article  Google Scholar 

  24. T. Maiti, R. Guo, A.S. Bhalla, J. Am. Ceram. Soc. 91, 1769 (2008)

    Article  Google Scholar 

  25. T. Maiti, R. Guo, A.S. Bhalla, J. Appl. Phys. 100, 114109 (2006)

    Article  Google Scholar 

  26. N.K. Karan, R.S. Katiyar, T. Maiti, R. Guo, A.S. Bhalla, J. Raman. Spectrosc. 40, 370 (2009)

    Article  Google Scholar 

  27. M. Ganguly, S.K. Rout, T.P. Sinha, S.K. Sharma, H.Y. Park, C.W. Ahn, I.W. Kim, J. Alloy. Compd. 579, 473 (2013)

    Article  Google Scholar 

  28. X.M. Chen, Y.H. Zou, G.L. Yuan, M. Zeng, J.M. Liu, J. Yin, Z.G. Liu, J. Am. Ceram. Soc. 96, 3788 (2013)

    Article  Google Scholar 

  29. X.G. Tang, J. Wang, X.X. Wang, H.L.W. Chan, Solid State Commun. 131, 163 (2004)

    Article  Google Scholar 

  30. W. Cai, C.L. Fu, J.C. Gao, Z.B. Lin, X.L. Deng, Ceram. Int. 38, 3367 (2012)

    Article  Google Scholar 

  31. K. Uchino, S. Nomura, Ferroelectrics 44, 55 (1982)

    Article  Google Scholar 

  32. C.S. Tu, R.R. Chien, T.H. Wang, J. Appl. Phys. 113, 17D908 (2013)

    Article  Google Scholar 

  33. G.W. Pabst, L.W. Martin, Y.H. Chu, R. Ramesh, Appl. Phys. Lett. 90, 072902 (2007)

    Article  Google Scholar 

  34. L.C. Wang, Z.H. Wang, S.L. He, X. Li, P.T. Lin, J.R. Sun, B.G. Shen, Phys. B 407, 1196 (2012)

    Article  Google Scholar 

  35. S.R. Das, R.N.P. Choudhary, P. Bhattacharya, R.S. Katiyar, P. Dutta, A. Manivannan, M.S. Seehra, J. Appl. Phys. 101, 034104 (2007)

    Article  Google Scholar 

  36. C.C. Leu, C.Y. Chen, C.H. Chien, M.N. Chang, F.Y. Hsu, C.T. Hu, Appl. Phys. Lett. 82, 3493 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51102288, 51372283), the Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJ131402), Natural Science Foundation of Chongqing (CSTC2012jjA50017), the Research Foundation of Chongqing University of Science and Technology (CK2013B08) and the Cooperative Project of Academician Workstation of Chongqing University of Science & Technology (CKYS2014Z01, CKYS2014Y04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, W., Fu, C., Chen, G. et al. Dielectric and ferroelectric properties of xBaZr0.52Ti0.48O3–(1−x)BiFeO3 solid solution ceramics. J Mater Sci: Mater Electron 26, 322–330 (2015). https://doi.org/10.1007/s10854-014-2403-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2403-3

Keywords

Navigation