Skip to main content
Log in

Synthesis and characteristics study of TiO2 nanowires and nanoflowers on FTO/glass and glass substrates via hydrothermal technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, a typical hydrothermal synthesis to grow long, high density, vertically aligned, well oriented and homogenous TiO2 nanowires arrays and flower-like film on conductive and nonconductive (glass) sides of fluorine doped tin oxide (FTO-glass) substrate are presented. Under the same conditions, the TiO2 nanowires arrays were directly grown on the FTO coated side. While the flower-like nanostructures were grown on the glass side. Two cleaned FTO-glass samples were placed inside the autoclave cylinder. The samples were placed at horizontal and inclined at 45° respectively. The average diameter and length of nanowires are 150 nm and 7.0 μm respectively. Also the average diameter of the prepared flower-like nanostructure of TiO2 is ≈5–10 µm. The flower-like nanostructure growth was confirmed in the absence of FTO by scratched line made on conductive side. The optical propertied of the TiO2 flower-like nanostructures was also investigated. The synthesized products were characterized by SEM equipped with EDS, XRD and UV–VIS NIR spectrophotometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T.E. Tiwald, M. Schubert, Proc. SPIE 4103, 19 (2000)

    Article  Google Scholar 

  2. J.G. Li, T. Ishigaki, X.D. Sun, J. Phys. Chem. C111, 4969 (2007)

    Google Scholar 

  3. N. Hosaka, T. Sekiya, C. Satoko, S. Kurita, J. Phys. Soc. Japan 66, 877 (1997)

    Article  Google Scholar 

  4. A.D. Paola, G. Cufalo, M. Addamo, M. Bellardita, R. Campostrini, M. Ischia, R. Ceccato, L. Palmisano, Colloid Surf. A Physicochem. Eng. Asp. 317, 366 (2008)

    Article  Google Scholar 

  5. G.L. Puma, A. Bono, D. Krishnaiah, J.G. Collin, J. Haz. Mat. 157, 209 (2008)

    Article  Google Scholar 

  6. Z. Wei, Y. Yao, T. Huang, A. Yu, Int. J. Electrochem. Sci. 6, 2011 (1879)

    Google Scholar 

  7. J.Y. Kim, H.S. Jung, J.H. No et al., J. Electroceram. 16, 447 (2006)

    Article  Google Scholar 

  8. D. Kaewsai, W. Jaruwongjinda, S. Daothong, P. Singjai, A. Watcharapasorn, S. Jiansirisomboon, J. Microsc. Soc. Thailand 24(2), 145 (2010)

    Google Scholar 

  9. L. Liyou, J. Chen, L. Li, W. Wang, Nanoscale Res. Lett. 7, 293 (2012)

    Article  Google Scholar 

  10. I. Oja, A. Mere, M. Krunks et al., Thin Solid Films 515, 674 (2006)

    Article  Google Scholar 

  11. H. Arami, M. Mazloumi, R. Khalifehzadeh, S.K. Sadrnezhaad, Mater. Lett. 61, 4559 (2007)

    Article  Google Scholar 

  12. A. Hu, X. Zhang, K.D. Oakes, P. Peng, Y.N. Zhou, M. R. Servos 189, 278 (2011)

    Google Scholar 

  13. H.-E. Wang, Z. Chen, Y.H. Leung, C. Luan, C. Liu, Y. Tang, C. Yan, W. Zhang, J.A. Zapien, I. Bello, S.T. Lee, Appl. Phys. Lett. 96, 263104 (2010)

    Article  Google Scholar 

  14. L. Cui, K.N. Hui, S. Hui, S.K. Lee, W. Zhou, Z.P. Wan, C.N.H. Thuc, Mater. Lett. 75, 175 (2012)

    Article  Google Scholar 

  15. C.C. Chung, T.W. Chung, T.C.K. Yang, Ind. Eng. Chem. Res. 47, 2301 (2008)

    Article  Google Scholar 

  16. R. Mohan, J. Drbohlavova, J. Hubale, Nanoscale Res. Lett. 8, 503 (2013)

    Article  Google Scholar 

  17. L.X. Yang, S.L. Luo, R.H. Liu, Q.Y. Cai, Y. Xiao, S.H. Liu, F. Su, L.F. Wen, J. Phys. Chem. C114, 4783 (2010)

    Google Scholar 

  18. Z.Y. Liu, M. Misra, Nanotechnology 21, 125703 (2010)

  19. L. Cui, K.N. Hui, K.S. Hui, S.K. Lee, W. Zhou, Z.P. Wan, C.-N. Ha Thuc, Mater. Lett. 75, 175 (2012)

  20. Z-j Zhou, J-q Fan, X. Wang, W-h Zhou, Z-l Du, S-x Wu, Appl. Mater. Interfaces 3(11), 4349 (2011)

    Article  Google Scholar 

  21. T.A. Kandiel, R. Dillert, A. Feldhoff, D.W. Bahnemann, J. Phys. Chem. C114, 4909 (2010)

    Google Scholar 

  22. J.M. Wu, B. Qi, J. Phys. Chem. C111, 666 (2007)

    Google Scholar 

  23. D. Pradhan, Z. Su, S. Sindhwani, J.F. Honek, K.T. Leung, J. Phys. Chem. C 115(37), 18149 (2011)

    Article  Google Scholar 

  24. W.C. Tian, Y.H. Ho, C.H. Chen, C.Y. Kuo, Sensors 13, 865 (2013)

    Article  Google Scholar 

  25. M. Munz, M. Langridge, K. Devarepally, D.C. Cox, P. Patel, N. Martin, G.M. Vargha, V. Stolojan, S. White, R.J. Curry, Appl. Mater. Interfaces 5(4), 1197 (2013)

    Article  Google Scholar 

  26. T.N. Ravishankar, K. Manjunatha, S. Sarkar, H. Nagabhushana, R. Goncalves, J. Dupont, Mater. Lett. 109, 27 (2013)

    Article  Google Scholar 

  27. C.Z. Shen, X. Zhang, Y. Wang, B.A. Korgel, A. Gupta, N. Bao, Appl. Mater. Interfaces 6(1), 122 (2014)

    Article  Google Scholar 

  28. H. Qiao, Q. Luo, Q. Wei, Y. Cai, F. Huang, Ionics 18, 667 (2012)

    Article  Google Scholar 

  29. B. Liu, E.S. Aydil, J. Am. Chem. Soc. 131(11), 3985 (2009)

    Article  Google Scholar 

  30. M. Abd-Lefdil, R. Diaz, H. Bihri, M.A. Aouaj, F. Rueda, Eur. Phys. J. Appl. Phys. 38(3), 217 (2007)

    Article  Google Scholar 

  31. C.J. Howard, T.M. Sabine, F. Dickson, Acta Crystallogr. Sect. B 47, 462 (1991)

    Article  Google Scholar 

  32. A. Kumar, A.R. Madaria, C. Zhou, J. Phys. Chem. C 114, 7787 (2010)

    Article  Google Scholar 

  33. S. Venkatachalam, D. Mangalaraj, S.A.K. Narayandass, Phys. B 393, 47 (2007)

    Article  Google Scholar 

  34. J.-C. Lee, K.-S. Park, T.-G. Kim, H.-J. Choi, Y.-M. Sung, Nanotechnology 17, 4317 (2006)

    Article  Google Scholar 

  35. D.P. Macwan, P.N. Dave, J. Mater. Sci. 46, 3669 (2011)

    Article  Google Scholar 

  36. R. Mohan, J. Drbohlavova, J. Hubalek, Nanoscale Res. Lett. 8, 530 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

I would like to acknowledge Dr. W. Zhou and his group working at AMRI/UNO/New Orleans/Louisiana/USA for laboratories accesses. My special appreciation to the CRDF/ISFP for providing this research opportunity in USA’s university.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Qader Dawood Faisal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faisal, A.Q.D. Synthesis and characteristics study of TiO2 nanowires and nanoflowers on FTO/glass and glass substrates via hydrothermal technique. J Mater Sci: Mater Electron 26, 317–321 (2015). https://doi.org/10.1007/s10854-014-2402-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2402-4

Keywords

Navigation