Skip to main content
Log in

Microstructures and electrical properties of copper oxide doped terbium oxide ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effects of copper oxide (CuO) on the microstructure and electric properties of nonstoichiometric compound terbium dioxide (Tb4O7) ceramics were investigated. Results included a reduction in the sintering temperature to 1,100 °C, a grain size of 4.2 μm, and a density of 96.2 %, which are larger than the values in previous investigation for Tb4O7 ceramics (grain sizes between 0.4 and 1.0 µm). Among the sintered ceramics, the sample doped with 10.0 wt% CuO showed the maximum nonlinear coefficient α = 43.5, which is obviously greater than α = 3.03 of the pure sample. Doping with 10.0 wt% CuO also exhibited nonlinearity α = 2.14 even at 1,123 K. In addition, the impedance spectra of the sample doped with 5.0 mol% CuO showed the largest grain boundary semicircle; 0 and 20 % samples showed both inductive and capacitive reactance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Matsuoka, Nonohmic properties of zinc oxide ceramics. J. Appl. Phys. 10, 736 (1971)

    Article  Google Scholar 

  2. A.B. Alles, V.L. Burdick, The effect of liquid-phase sintering on the properties of Pr6O11-based ZnO varistors. J. Appl. Phys. 70, 6883 (1991)

    Article  Google Scholar 

  3. C.-W. Nahm, C.-H. Park, H.-S. Yoon, Microstructure and varistor properties of ZnO–Pr6O11–CoO–Nd2O3 based ceramics. J. Mater. Sci. Lett. 19, 271 (2000)

    Article  Google Scholar 

  4. K. Park, J.K. Seong, S. Nahm, Improvement of thermoelectric properties with the addition of Sb to ZnO. J. Alloys Compd. 455, 331 (2008)

    Article  Google Scholar 

  5. L.M. Levinson, H.R. Phillip, Am. Ceram. Soc. Bull. 65, 639 (1986)

    Google Scholar 

  6. S.A. Pianaro, P.R. Bueno, E. Longo, J.A. Varela, Microstructure and electric properties of a SnO2 based varistor. Ceram. Int. 25, 1 (1999)

    Article  Google Scholar 

  7. P.R. Bueno, J.A. Varela, E. Longo, SnO2, ZnO and related polycrystalline compound semiconductors: an overview and review on the voltage-dependent resistance (non-ohmic) feature. Eur. Ceram. Soc. 28(3), 505–509 (2008)

    Article  Google Scholar 

  8. S.L. Yang, J.M. Wu, Effects of Nb2O5 in (Ba, Bi, Nb)-added TiO2 ceramic varistors. J. Mater. Res. 10, 345 (1995)

    Article  Google Scholar 

  9. A.B. Gaikwad, S.C. Navale, V. Ravi, TiO2 ceramic varistor modified with tantalum and barium mater. Sci. Eng. B. 123(1), 50 (2005)

    Article  Google Scholar 

  10. N. Ichinose, M. Watanabe, VDR effect in Bi diffused SrTiO3 based ceramics. Am. Ceram. Soc. Inc. Ohio. 41, 231–238 (1994)

    Google Scholar 

  11. Y. Wang, K.L. Yao, Z.L. Liu, Novel nonlinear current–voltage characteristics of sintered tungsten oxide. J. Mater. Sci. Lett. 20(18), 1741 (2001)

    Article  Google Scholar 

  12. A. Bui, A. Khedim, A. LoubiGre, M.B. Kourdi, Aging of zinc oxide varistors subjected to partial discharges in sulfur hexafluoride. J. Appl. Phys. 69, 1036 (1991)

    Article  Google Scholar 

  13. M. Akbar, M. Ahmad, Failure study of metal-oxide surge arresters. Electr. Power Syst. Res. 50, 79–82 (1999)

    Article  Google Scholar 

  14. S. Hirose, K. Nishita, H. Niimi, Influence of distribution of additives on electrical potential barrier at grain boundaries in ZnO-based multilayered chip varistor. J. Appl. Phys. 100, 083706 (2006)

    Article  Google Scholar 

  15. M. Kawabe, H. Ono, T. Sano, M. Tsuji, Y. Tamaura, Thermochemical oxygen pump with praseodymium oxides using a temperature-swing at 403–873 k. Energy 22, 1041 (1997)

    Article  Google Scholar 

  16. T.Y. Li, H.W. Zhao, L. Dong, N. Guo, Y. Wan, Novel varistor material based on terbium oxide. J. Phys. D Appl. Phys. 42, 035401 (2009)

    Article  Google Scholar 

  17. Z.C. Kang, L. Eyring, Fluorite structural principles: disordered α-phase to ordered intermediate phases in praseodymia. J. Alloys Compd. 275–277, 721 (1998)

    Article  Google Scholar 

  18. T.Y. Li, H.Q. Wang, Z.Q. Hua, L. Dong, H.W. Zhao, Y. Wang, Densification and grain growth of CuO-doped Pr6O11 varistors. Ceram. Int. 36, 1511–1516 (2010)

    Article  Google Scholar 

  19. P.R. Bueno, M.R. Cassia-Santos, E.R. Leite, E. Longo, J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago, Nature of the Schottky-type barrier of highly dense SnO2 systems displaying nonohmic behavior. J. Appl. Phys. 88, 6545 (2000)

    Article  Google Scholar 

  20. H.M. Rietveld, Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 22, 151 (1967)

    Google Scholar 

  21. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A32, 751 (1976)

    Article  Google Scholar 

  22. G.M. Kale, Gibbs energy of formation of Cu2Yb2O5 and thermodynamic stability of Cu2R2O5 (R = Tb–Lu). J. Solid State Chem. 125, 13–18 (1996)

    Article  Google Scholar 

  23. Y. Gan, X. Dong, S. Peng, L. Dong, Y. Wang, Microstructure and thermoelectric properties of tungsten trioxide ceramics doped with a low amount of terbium dioxide. J. Mater. Sci. Mater. Electron. 24(10), 4001 (2013)

    Google Scholar 

  24. B.L. Zhu, C.S. Xie, W.Y. Wang, K.J. Huang, J.H. Hu, Improvement in gas sensitivity of ZnO thick film to volatile organic compounds (VOCs) by adding TiO2. Mater. Lett. 58, 624–629 (2004)

    Article  Google Scholar 

  25. K. Park, K.U. Jang, H.C. Kwon, J.G. Kim, W.S. Cho, Influence of partial substitution of Cu for Co on the thermoelectric properties of NaCo2O4. J. Alloy Compd. 419, 213–219 (2006)

    Article  Google Scholar 

  26. S. Peng, Y. Wang, H. Wang, X. Dong, L. Dong, Y. Gan, Microstructure and electrical properties in low-Sb2O3-doped Pr6O11 ceramics. J. Am. Ceram. Soc. 95(9), 2914–2918 (2012)

    Article  Google Scholar 

  27. P.R. Bueno, E.R. Leite, L.O.S. Bulhões, E. Longo, C.O. Paiva-Santos, Sintering and mass transport features of (Sn, Ti)O2 polycrystalline ceramics. J. Eur. Ceram. Soc. 6, 887–896 (2003)

    Article  Google Scholar 

  28. S. Bernik, N. Daneu, A. Rečnik, Inversion boundary induced grain growth in TiO2 or Sb2O3 doped ZnO-based varistor ceramics. J. Eur. Ceram. Soc. 24, 3703–3708 (2004)

    Article  Google Scholar 

  29. K. Park, H.K. Hwang, J.W. Seo, W.-S. Seo, Enhanced high-temperature thermoelectric properties of Ce- and Dy-doped ZnO for power generation. Energy 54, 139 (2013)

    Article  Google Scholar 

  30. Z.C. Kang, L. Eyring, Lattice oxygen transfer in fluorite-type oxides containing Ce, Pr, and/or Tb. J. Solid State Chem. 155, 129–137 (2000)

    Article  Google Scholar 

  31. C.-W. Nahm, Electrical properties and stability of Tb-doped zinc oxide-based nonlinear resistors. Solid State Commun. 141, 685–690 (2007)

    Article  Google Scholar 

  32. I.D. Brown, D. Altermatt, Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr. B41, 244–247 (1985)

    Google Scholar 

  33. H. Wang, Z. Qiuhua, S. Peng, X. Dong, L. Dong, Y. Wang, Effect of CeO2 on the thermo electric properties of WO3-based ceramics. Ceram. Int. 38, 1133–1137 (2012)

    Article  Google Scholar 

  34. H.K. Hwang, G.W. Lee, T. Athar, S.-J. Kim, W.-S. Seo, Y.-S. Lim, S.-M. Choi, K. Park, Influence of sintering temperature on the microstructure and thermoelectric properties of polycrystalline. J. Nanosci. Nanotechnol. 13, 405 (2013)

    Article  Google Scholar 

  35. L.M. Levinson, H.R. Philipp, High frequency and high current studies of metal oxide varistors. J. Appl. Phys. 47(7), 3116 (1976)

    Article  Google Scholar 

  36. A.C. Caballero, D.F. Hevia, J. de Frutos, M. Peiteado, J.F. Ferna´ndez, Bulk grain resistivity of ZnO-based varistors. J. Electroceram. 13(7–8), 759–763 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (2682013CX014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingjie Gan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, Y., Wang, Y., Dong, X. et al. Microstructures and electrical properties of copper oxide doped terbium oxide ceramics. J Mater Sci: Mater Electron 25, 4115–4121 (2014). https://doi.org/10.1007/s10854-014-2137-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2137-2

Keywords

Navigation