Skip to main content
Log in

Microstructural, optical and electrical properties of various time annealed spin coated MgO thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, we have reported on the effect of annealing time variations for spin coated magnesium oxide (MgO) thin films. The various time annealed MgO thin films structural, surface morphological, compositional, electrical and optical absorption properties were studied by X-ray diffraction, scanning electron microscopy, energy dispersive analysis by X-rays, I–V studies and UV–vis spectroscopy, respectively. The cubic structure formation with preferential orientation along the (200) plane was confirmed from structural analysis. In addition, the influence of the annealing on the microstructural properties of MgO was plausibly explained. The optical properties of MgO thin films were estimated using the transmission spectrum in the range of 400–800 nm. The optical band gap energy of MgO thin films was found to be in the range between 3.81 and 3.93 eV. The morphological studies depicted that the spherical and ellipsoid shaped grains were distributed evenly over the entire surface of the film. The sizes of the grains are found to be in the range between 200 and 250 nm. The composition analysis was performed by EDX for various temperatures annealed MgO thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X. Fu, Z. Song, G. Wu, J. Huang, X. Duo, C. Lin, 16, 277–281 (1999)

  2. G. Ertl, H. Knozinger, J. Weitkamp (eds.), Handbook of heterogenous catalysis. 4, Wiley–VCH, Weinheim, 2111 (1997)

  3. M. Baumer, H.-J. Freund, Prog. Surf. Sci. 61, 127 (1999)

    Google Scholar 

  4. L.A. Ma, Z.X. Lin, J.Y. Lin, Y.A. Zhang, L.Q. Hu, T.L. Guo, Physica E 41, 1500 (2009)

    Article  Google Scholar 

  5. S. Benedetti, H.M. Benia, N. Nilius, S. Valeri, H.J. Freund, Chem. Phys. Lett. 430, 330 (2006)

    Google Scholar 

  6. A.M.E. Raj, V.B. Jothy, C. Ravidhas, T. Som, M. Jayachandran, C. Sanjeeviraja, Radiat. Phys. Chem. 78, 914–921 (2009)

    Google Scholar 

  7. P. Luches, S. Benedetti, M. Liberati, F. Boscherini, I.I. Pronin, S. Valeri, Surf. Sci. 583, 191 (2005)

    Article  Google Scholar 

  8. M.C. Wu, J.S. Corneille, C.A. Estrada, J.W. He, D.W. Goodman, Chem. Phys. Lett. 182, 472 (1991)

    Google Scholar 

  9. E.-H. Choi, H.-J. Oh, Y.-G. Kim, J.-J. Ko, J.-Y. Lim, J.-G. Kim, D.-I. Kim, G. Cho, S.-O. Kang, Jpn. J. Appl. Phys. 37, 7015 (1998)

    Article  Google Scholar 

  10. E. Palomares, J.N. Clifford, S.A. Haque, T. Lutz, J.R. Durrent, J. Am. Chem. Soc. 125, 475 (2003)

    Article  Google Scholar 

  11. A. Kay, M. Gratzel, Chem. Mater. 14, 2930 (2002)

    Article  Google Scholar 

  12. S. Fujii, A. Tomozawa, E. Fujii, H. Torii, R. Takayama, J. Appl. Phys. Lett. 65, 1463 (1994)

    Article  Google Scholar 

  13. S. Utamapanya, K.J. Klabunde, J.R. Schlup, J. Chem. Mater. 3, 175 (1991)

    Google Scholar 

  14. A.V. Chadwick, I.J.F. Poplett, D.T.S. Maitland, M.E. Smith, Chem. Mater. 10, 864–870 (1998)

    Article  Google Scholar 

  15. A. Kumar, J. Kumar, J. Phys. Chem. Solids 69, 2764–2772 (2008)

    Google Scholar 

  16. X. Bokhimi, A. Morales, M. Portila, A.G. Ruiz, Nanostruct. Mater. 12, 589–592 (1999)

    Article  Google Scholar 

  17. T. Selvamani, T. Yagyu, S. Kawasaki, I. Mukhopadhyay, J. Catal. Commun. 11, 537–541 (2010)

    Article  Google Scholar 

  18. A. Subramania, G.V. Kumar, A.R. Priya, T. Vasudevan, Nanotechnology 18, 1–5 (2007)

    Google Scholar 

  19. J. Jiu, K.I. Kurumada, M. Tanigaki, S. Yoshikawa, Mater. Lett. 58, 44–47 (2003)

    Article  Google Scholar 

  20. J.A. Wang, O. Novaro, X. Bokhimi, T. Lopez, R. Gomez, J. Navarrete, M.E. Lianos, E.L. Salinas, Mater. Lett. 35, 317–323 (1998)

    Article  Google Scholar 

  21. V. Dhanasekaran, T. Mahalingam, Mater. Res. Bull. 48, 3585–3593 (2013)

    Article  Google Scholar 

  22. V. Dhanasekaran, N. Soundaram, S.I. Kim, R. Chandramohan, S. Mantha, S. Saravanakumar, T. Mahalingam, New J. Chem. (2014). doi:10.1039/c4nj00084f

    Google Scholar 

  23. S. Valanarasu, V. Dhanasekaran, M. Karunakaran, R. Chandramohan, T. Mahalingam, J. Nanosci. Nanotechnol. 14, 4286–4291 (2014)

    Article  Google Scholar 

  24. V. Dhanasekaran, T. Mahalingam, J.-K. Rhee, J.P. Chu, Optik 124, 255–260 (2013)

    Article  Google Scholar 

  25. R. Chandramohan, V. Dhanasekaran, S. Ezhilvizhian, T.A. Vijayan, J. Thirumalai, A. John Peter, T. Mahalingam, J. Mater. Sci. Mater. Electron. 23, 390–397 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Dhanasekaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valanarasu, S., Dhanasekaran, V., Karunakaran, M. et al. Microstructural, optical and electrical properties of various time annealed spin coated MgO thin films. J Mater Sci: Mater Electron 25, 3846–3853 (2014). https://doi.org/10.1007/s10854-014-2098-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2098-5

Keywords

Navigation