Skip to main content
Log in

Influence of Mn doping on structural, electrical and magnetic properties of (0.90)BiFeO3–(0.10)BaTiO3 composite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Structural, electrical and magnetic properties of chemically synthesized polycrystalline Mn doped (0.90)BiFeO3–(0.10)BaTiO3 composites [(0.90)BiFe1−xMnxO3–(0.10)BaTiO3 (x = 0.0, 0.03, 0.05 and 0.10)] were studied. The dielectric constant was observed to decrease when frequency was increased from 20 Hz to 1 MHz and increased with the increase in temperature from 313 to 773 K. An interesting correlation between the antiferromagnetic Neel temperature (TN) of bismuth ferrite and temperature dependent dielectric constant was observed. The calculated values of activation energies were in the order of 0.25–0.74 eV (<1.0 eV) and decreases with an increase of Mn concentration. The variation of a.c. conductivity obeyed the Jonscher’s power law (σ ac  ∝ ω s). The observed value of exponent‘s’ were in the range 0.09 < ‘s’ < 0.78 (<1.0) for all the sample at temperature ranging from 473 to 598 K. There was a systematic increase in the value of spontaneous magnetization on increasing Mn concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.W. Cheong, M. Mostovoy, Nat. Mater. 6, 13 (2007)

    Article  Google Scholar 

  2. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)

    Article  Google Scholar 

  3. J.W. Kim, D.C. Yoon, M.S. Jeon, D.W. Kang, J.W. Kim, H.S. Lee, Curr. Appl. Phys. 10, 1297 (2010)

    Article  Google Scholar 

  4. N. Nuraje, X. Dang, J. Qi, M.A. Alen, Y. Lei, A.M. Belcher, Adv. Mater. 24, 2885 (2012)

    Article  Google Scholar 

  5. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719 (2003)

    Article  Google Scholar 

  6. G. J. Mac Dougall, H. M. Christen, W. Siemons, M. D. Biegalski, J. L. Zarestky, S. Liang, E. Dagotto, S. E. Nagler, Phys. Rev. B 85, 100406 (R) (2012)

    Google Scholar 

  7. J. Dho, X. Qi, H. Kim, J.L. MacManus-Driscoll, M.G. Blamire, Adv. Mater. 18, 1445 (2006)

    Article  Google Scholar 

  8. F. Kubel, H. Schmid, Acta Crystallogr. B 46, 698 (1990)

    Article  Google Scholar 

  9. P. Fischer, M. Polomska, I. Sosnowska, M. Szymanski, J. Phys. Solid State Phys. 13, 1931 (1980)

    Article  Google Scholar 

  10. F. Gao, Y. Yuan, F.K. Wang, Y.X. Chen, F. Chen, J.-M. Liu, F.Z. Ren, Appl. Phys. Lett. 89, 102506 (2006)

    Article  Google Scholar 

  11. Y. Du, X.Z. Cheng, X.S. Dou, J.D. Attard, L.X. Wang, J. Appl. Phys. 109, 073903 (2011)

    Article  Google Scholar 

  12. R. Mazumder, S.P. Devi, D. Bhattacharya, P. Choudhary, A. Sen, M. Raja, Appl. Phys. Lett. 91, 062510 (2007)

    Article  Google Scholar 

  13. L. Fang, J. Lui, S. Ju, F. Zheng, W. Dong, M. Shen, Appl. Phys. Lett. 242501 (2010)

  14. J.S. Kim, C.I. Cheon, H.S. Shim, P.W. Jang, Jpn. J. Appl. Phys. 40, 5653 (2001)

    Article  Google Scholar 

  15. J.S. Kim, C.I. Cheon, C.H. Lee, P.W. Jang, J. Appl. Phys. 96, 468 (2004)

    Article  Google Scholar 

  16. F. Chang, N. Zhang, F. Yang, S. Wang, G. Song, J. Phys. D Appl. Phys. 40, 7799–7803 (2007)

    Article  Google Scholar 

  17. V.A. Khomchenko, D.A. Kiselev, J.M. Vieira, L. Jian, A.L. Kholkin, A.M.L. Lopes, Y.G. Pogorelov, J.P. Araujo, M. Maglione, J. Appl. Phys. 103, 024105 (2008)

    Article  Google Scholar 

  18. M. Kumar, K.L. Yadav, Appl. Phys. Lett. 91, 112911 (2007)

    Article  Google Scholar 

  19. Y.H. Lin, Q. Jiang, Y. Wang, C.W. Nan, L. Chen, J. Yu, Appl. Phys. Lett. 90, 172507 (2007)

    Article  Google Scholar 

  20. R.D. Shannon, Acta Crystallogr. Sect. A: Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 32, 751 (1976)

  21. C.F. Chung, J.P. Lin, J.M. Wu, Appl. Phys. Lett. 88, 242909 (2006)

    Article  Google Scholar 

  22. V.R. Palkar, C. Darshan, C. Kundaliya, S.K. Malik, J. Appl. Phys. 93, 4337–4339 (2003)

    Article  Google Scholar 

  23. Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, Z.G. Liu, Appl. Phys. Lett. 84, 1731 (2004)

    Article  Google Scholar 

  24. Z.X. Cheng, A.H. Li, X.L. Wang, S.X. Dou, K. Ozawa, H. Kimura, S.J. Zhang, T.R. Shrout, J. Appl. Phys. 103, 07E507 (2008)

    Google Scholar 

  25. X. Zhenga, Q. Xua, Z. Wenb, X. Langa, D. Wub, T. Qiua, M.X. Xua, J. Alloys Compd. 499, 108–112 (2010)

    Article  Google Scholar 

  26. X.J. Zhang, Y.J. Dai, W. Lu, W.L.H. Chan, B. Wu, X.D. Li, J. Phys. D Appl. Phys. 41, 235405 (2008)

    Article  Google Scholar 

  27. X.J. Zhang, Y.J. Dai, W.L.H. Chan, J. Appl. Phys. 107, 104105 (2010)

    Article  Google Scholar 

  28. C.G. Koops, Phys. Rev. 83(1), 121–124 (1951)

    Article  Google Scholar 

  29. A. Singh, V. Pandey, R.K. Kotnala, D. Pandey, Phys. Rev. Lett. 101, 247602 (2008)

    Article  Google Scholar 

  30. L. Benguigui, Solid State Commun. 11, 825 (1972)

    Article  Google Scholar 

  31. P. Tirupathi, A Chandra. Phys. Status Solidi. B 249(8), 1639–1645 (2012)

    Article  Google Scholar 

  32. A.K. Jonscher, Nature (London) 264, 673 (1977)

    Article  Google Scholar 

  33. K.H. Kim, J.Y. Gu, H.S. Choi, G.W. Park, T.W. Noh, Phys. Rev. Lett. 77, 1877 (1996)

    Article  Google Scholar 

  34. A. Molak, M. Paluch, S. Pawlus, J. Klimontko, Z. Ujma, I. Gruszka, J. Phys. D Appl. Phys. 38, 1450 (2005)

    Article  Google Scholar 

  35. A. Mukherjee, S. Basu, G. Chakraborty, M. Pal, J. Appl. Phys. 112, 014321 (2012)

    Article  Google Scholar 

  36. Dilip K. Pradhan, R.N.P. Choudhary, C. Rinaldi, R.S. Katiyar, J. Appl. Phys. 106, 024102 (2009)

    Article  Google Scholar 

  37. Rajasree Das, Tanushree Sarkar, K Mandal. J. Phys. D Appl. Phys. 45, 455002 (2012)

    Article  Google Scholar 

  38. K. Prasad, S. Bhagat, K. Amarnath, S.N. Choudhary, K.L. Yadav, Mater. Sci. Poland 28, 317 (2010)

    Google Scholar 

  39. A.K. Pradhan, K. Zhang, D. Hunter, J.B. Dadson, G.B. Loutts, P. Bhattacharya, R. Katiyar, J. Zhang, D.J. Sellmyer, U.N. Roy, Y. Cui, A. Burger, J. Appl. Phys. 97, 093903 (2005)

    Article  Google Scholar 

  40. M.H. Kumar, S. Srinath, G.S. Kumar, S.V. Suryanarayana, J. Magn. Magn. Mater. 188, 203 (1998)

    Article  Google Scholar 

  41. G.A. Gehring, Ferroelectrics 61, 275 (1994)

    Article  Google Scholar 

  42. I. Sosnowska, W. Schafer, W. Kockelmann, K. H. Anderson, I. O. Troyanchuk, Appl. Phys. A: Mater. Sci. Process. A 74, S1040 (2002)

Download references

Acknowledgments

M.S is greatful to the Sharda University of India for providing financial support and leave for carrying out this work at Motilal Nehru National Institute of Technology Allahabad. N.K is thankful to Department of Science and Technology, Government of India for funding (SR/FTP/PS-04/2008) and director MNNIT for the support. N.K also acknowledges consistent support provided by the Director MNNIT Allahabad and Centre for Interdisciplinary Research (CIR) MNNIT Allahabad for the access of centered research facilities. M.K is thankful to National Facility installed in Magnetics & Advanced Ceramics Laboratory at IIT Delhi for magnetic measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohit Sahni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahni, M., Kumar, N., Singh, S. et al. Influence of Mn doping on structural, electrical and magnetic properties of (0.90)BiFeO3–(0.10)BaTiO3 composite. J Mater Sci: Mater Electron 25, 2199–2209 (2014). https://doi.org/10.1007/s10854-014-1859-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-1859-5

Keywords

Navigation